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ABSTRACT

Data-driven methods for the initialization of full-waveform

inversion

Oleg Ovcharenko

This thesis is dedicated to the study of methods for the initialization of seismic

full-waveform inversion. Full-waveform inversion (FWI) is a non-linear optimization

technique for high-resolution imaging of the subsurface. While being widely accepted in

the industry it still struggles when applied to band-limited seismic data in the absence

of a realistic starting model for inversion.

In this thesis, I propose three methods to improve the initialization of FWI which

focus on improvements in model, data, and joint model and data domains. The first

method aims to improve velocity model building in the presence of salt bodies by mea-

suring variance between mono-frequency inversion results. High variance then indicates

problematic areas where we introduce corrections and facilitate the convergence of non-

linear optimization. The second method approaches the same problem of initialization of

FWI, but in the data domain rather than the model domain. I extrapolate low-frequency

data from its respective higher-frequency components of seismic wavefield by using deep

learning. The method operates in the frequency domain and aims at mono-frequency ex-

trapolation by a dedicated neural network. We observe that lower frequencies are easier

to extrapolate due to smooth variations in the long-wavelength signal. The third method

aims to jointly recover both low-wavenumber initial model and low-frequency data to

enable successful elastic FWI in marine streamer data setups. This way, the reconstructed

tomographic model of the subsurface compensates for the missing ultra-low frequencies

in reconstructed low-frequency data. Altogether, this leads to successful elastic FWI in

synthetic and field data surveys. I conclude the thesis by discussing the benefits and

drawbacks of the proposed methods as well as give an outlook on future research.
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Chapter 1

Introduction

Hydrocarbons and ores have accompanied humankind throughout its history. From at

least the Iron Age until the nineteenth century, the use of oil was limited and oil was

obtained almost exclusively from surface seeps and mine workings. With the introduction

of new technologies in both production and refining in the 1860s, the oil era has begun

[1]. Nowadays, public attention is often focused on fossil fuels used as a source of energy.

However, this is only the tip of the iceberg as products made using petroleum derivatives

have become indivisible parts of our daily life. We unconsciously boost oil production

when we brush our teeth with toothpaste, carry purchases from the store in plastic bags

(hopefully for not much longer anymore), or go out for a run in new sneakers. This

is why the demand for oil and gas naturally grows with the population increase on our

planet.

Searching for new oil reservoirs is a costly multi-step procedure where one of the

final stages is seismic imaging and inversion. The imaging aims to reveal the geological

structure of the subsurface by looking primarily at acoustic waveforms recorded on the

surface. Successful imaging requires numerous hours of human expertise and computa-

tional resources. Altogether, these efforts contribute to the raw cost of oil. In particular,

slow turnover and inaccurate imaging of subsurface targets might infer significant fi-

nancial losses due to using excessive human and computational resources, drilling in

the wrong locations, or overestimating potential resources. Thus, increasing accuracy,

delivering faster turnover, and reducing expert intervention into seismic imaging and

inversion would increase the efficiency of oil exploration.
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1.1 Background

From the variety of methods for recovering the model of the subsurface from recorded

acoustic waveforms, seismic full-waveform inversion (FWI) is the modern industry stan-

dard for high-resolution imaging. This thesis covers three different methods for the

data-driven initialization of FWI. Two of the proposed methods are tailored for fre-

quency domain data manipulations while the other one works in the time domain. One

method pivots on a conventional FWI engine while the other two have deep learning as

their backbone. Such a diversity of definitions makes it hard to comprehend everything

in a shared introduction. For this reason, below I provide a brief overview of FWI and

relevant concepts from deep learning. Please refer to detailed introductions in each

chapter for a deeper dive into the relevant domain for each application.

Below I explain the concept of FWI as well as cover relevant topics from deep learning.

Then, I explain the evolution of ideas in the manuscript and provision the content of its

chapters.

1.1.1 Full-waveform inversion

Exploration for oil starts with a seismic survey. Acoustic waves propagating in the Earth

encode information about rock properties along their propagation paths and deliver these

data to the surface. Surface oscillations are then recorded by receivers in the form of seis-

mograms which are later used to reconstruct the original distribution of rock properties.

The ultimate goal of seismic exploration is to build an accurate model of the subsurface

which then might be used as a road map for the development of hydrocarbon reservoirs

or mining fields. Methods for imaging the subsurface by seismic data evolved over time

from zero-offset time migration to Full-Waveform Inversion (FWI), which is the modern

industrial standard [2, 3, 4]. Despite being sharpened by decades of successful appli-

cations, FWI still requires an expert intervention which includes preparation of seismic

data, building a realistic starting velocity model, and modifying the inversion objective

which drives optimization. Improvements in each of these stages would facilitate the

convergence of the method to a realistic model of the Earth’s interior.

As the name suggests, FWI attempts to match both phase and amplitude information
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in recorded waveforms by exploring the space of possible subsurface realizations. The

core idea of FWI is to iteratively build a model of the subsurface which would produce

seismic recordings in a synthetic experiment identical to the field observations. For

this purpose, synthetic and observed seismograms are matched to compute values of a

misfit, or objective, functional. As a non-linear optimization problem, FWI might con-

verge to a minimum of the objective functional which does not guarantee the fidelity

of the resulting distribution of the model parameters. The success of FWI, as for any

problem of nonlinear optimization, mainly depends on the formulation of the objective

function, the initial point for the optimization, and the optimization strategy. The latter

is usually implemented with gradient-based optimization schemes [5], whereas the first

two parameters are subject to extensive research. When the geological target is simple

and the setup is synthetic, the objective function tends to be smooth and convex, which

ultimately results in quick convergence to a true parameter distribution in the model.

However, this is never true in realistic scenarios where the objective function suffers from

multiple local minima due to sinusoidal nature of wavefield and the extensive scattering.

Meanwhile, natural noise and imperfection of seismic acquisition affect the ill-posedness

of the inverse problem and limit the reachable resolution of subsurface imaging. Deriva-

tives of the misfit functional with respect to model parameters provide a model update

for each iteration. The misfit functional tends to zero as the synthetic model approaches

the true distribution of geological parameters.

Methods for misfit and gradient modifications

Modifications introduced into the misfit function of FWI generally assume two groups of

methods. The first group is focused on the re-formulation of the metric to calculate the

difference between synthetic and observed data. The second group aims to regularize the

inversion by reducing the number of local minima on the objective function. Smoother

objective functions e.g., envelope or cross-correlation-based functions lead to fewer local

minima and therefore FWI is more likely to converge to the global minimum of the

misfit functional [6, 7, 8, 9, 10]. The headwind is that these methods are typically

associated with increased computational costs. Furthermore, adding regularizations

[11] and/or constraints [12] to the inversion also can lead to better convergence toward
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the global minimum. Examples of constrained inversions include works by [13, 14] and

[15], who used a total variation norm to invert a salt-affected subsurface using FWI.

Regularized inversion methods could be computationally expensive when multiple runs

on a fine mesh are needed and these methods often require prior assumptions about the

subsurface structure [16].

An alternative for modifications with misfit functional is to manipulate image or gradi-

ent with single iteration updates of FWI. Gradient conditioning can lead to shorter paths

toward the global minimum without being trapped in the local minima [17, 18]. Image-

guided inversion [19], gradient optimization, [20] or gradient conditioning through

scattering angle-based filters [21, 22] can serve the same purpose.

Methods for initial model building

While research on the formulation of the objective functional and related regularizations

is mostly analytical, the problem of building a realistic initial model for optimization

remains an empirical task. For a geologically simple model, the starting model for FWI

might be built using travel time tomography which fails to deliver a sufficiently accurate

model for FWI when highly reflective salt bodies are present in the subsurface. This is due

to strong reflections and multi-scattering which occur when seismic waves interact with

the surface of a buried salt body. Starting inversion from a poor initial point often leads

to the convergence of optimization to a local minimum that projects as cycle-skipping

artifacts in the model domain.

Cycle-skipping occurs when the initial model of the subsurface model significantly

deviates from the true geological distribution. Then, the algorithm mismatches wiggles of

synthetic and field data which ultimately leads to localized clusters of unrealistically high

or low values of target parameters. While given an accurate starting point, optimization

quickly converges to a realistic distribution of geological parameters. The conventional

approach for building an accurate subsurface model for FWI for a salt-induced medium

is manual salt-edge picking on migrated images [23]. Numerous automated approaches

for constrained and regularized inversion have been proposed since the discovery of

promising oil reservoirs beneath salt bodies in the Gulf of Mexico [24, 14, 11]. Whereas

the inversion could naturally converge to a true subsurface model even from a poor
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starting point if broadband seismic data with very low-frequency content are available.

Otherwise, when there are not contrastive objects in the medium, traveltime tomography

allows building an accurate kinematic model based on picked first arrivals [25].

When low-frequency data are available in the dataset the multiscale inversion strat-

egy [26] might compensate for the poor initial model. This multiscale inversion strategy

assumes a successive series of inversions of band-limited subsets of seismic data. In the

frequency domain, this is equivalent to running a number of mono-frequency inversions

to gradually produce the subsurface model with fine details recovered at higher frequen-

cies. In the time domain, entire bands rather than individual frequencies are inverted at

each stage of the multiscale strategy. Thus, the lowest available frequency in the dataset

defines the scale of the largest structures recovered by inversion at early iterations of the

multiscale workflow.

The key takeaway from this subsection is that available high-fidelity initial model or

low-frequency content present in the data are major contributors to the success of FWI

application. Meanwhile, the initial model and low-frequency data are interchangeable

when considered in the framework of FWI. When a robust initial model is available,

inversion might be started from a higher frequency. Alternatively, when low-frequency

data are accessible, the inversion might be initiated from a poor initial guess.

1.1.2 Deep learning

The transition to the information age in the 21st century was also marked by the expo-

nential growth of amounts of data generated by humanity. The data-rich environment, in

turn, inevitably leads to the development of methods which would "learn" dependencies

in the data to address a given task.

Deep learning (DL) is a subset within the science of Artificial Intelligence primarily

attributed to the usage of deep neural networks [27]. The core idea of DL is built around

algorithms that modify themselves to produce the desired output while given a set of

structured or unstructured data. An artificial neuron is considered a principal building

block for deep learning models. Each neuron performs a non-linear operation on the

input data and the produced output then becomes an input to the next neuron or to

many neurons in a chain-like architecture. There are more sophisticated elements within



19

the DL toolbox but the intention here is to give a bird-view on structures relevant for this

manuscript. Typically, such artificial neurons are arranged into layers which then shape

multi-layer architectures of artificial neural networks (NN). The standard NN consists

of several layers, each of which creates a new representation of the source data. This

way, the source data are inherently decomposed into low- and high-level representations

which are then assembled together in a non-linear way to produce the target output. The

mismatch between produced and target outputs is then used to adjust the parameters

of the model. Over numerous iterations, the NN is able to learn any non-linear function

which makes it a universal approximator [28].

Unsupervised learning is the paradigm of training neural networks on unlabeled

data. Meaning that the algorithm attempts to identify clusters and dependencies in the

input data where the target is either unknown or ambiguous. Unsupervised methods

enable the truly data-driven way for retrieval of the desired properties from available

seismic data. While not used in this manuscript I strongly believe that unsupervised

solutions for the problems of low-frequency extrapolation and velocity model building

are somewhere nearby and we will find them soon. However, in this work, I focus on

supervised methods to address the same problems. Meanwhile, existing unsupervised

solutions showed promising results in horizon tracking and segmentation [29, 30], facies

classification [31, 32], first-arrival picking and event detection, [33, 34, 35] and others.

Notice, that these applications assume that sufficient information is already available in

the input data. So the problem converges to extracting this hidden information from

the inputs. On the contrary, there are such problems where the sought-for quantities

are not present in the input data due to the inability to accurately collect those target

properties in the field. For example, low-frequencies < 3 Hz are challenging to acquire

in the field as well as directly "measuring" the geological structure of deep subsurface

is impossible. While possible to be addressed in an unsupervised fashion (e.g. within

the generative adversarial framework [36, 37]), these problems with limited access to

real-world targets still rely on supervised methods and synthetic datasets.

Supervised learning assumes the availability of a target pair for each given input

data sample. The NN then learns patterns by being fed with multiple pairs of available

inputs and desirable outputs. This is the to-go paradigm when a relevant dataset is

available. Such supervised methods are also actively developed for facies classification
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[38, 39, 40], fault mapping [41, 42], first-arrival picking [43, 44], source mechanism

inversions [45], and various kinds of seismic inversions [46, 47, 48, 39, 49, 50, 51].

However, real-world applications of deep learning for exploration geophysics struggle

from limited available datasets for supervised training. The reason is that a typical

problem of interest requires solving an inverse problem that is a costly and labor-intensive

task. For example, such regression tasks as velocity model building directly from field

data or low-frequency extrapolation from high-frequency seismic data require running

inversion for the subsurface and costly low-frequency acquisition to collect target data

for supervised training. The affordable workaround, however, is to generate synthetic

data which would be sufficient to enable the knowledge transfer between the synthetic

and real-world domains. In this thesis, all deep learning applications are tailored within

the supervised learning paradigm where training datasets are generated in synthetic

setups.

Methods for reconstruction of low-frequency seismic data

Low frequencies present in seismic data are a valuable asset in multiple applications

[52]. The long-wavelength data scatter less and penetrate deeper into the subsurface. It

also features fewer minima during non-linear optimization and increases the resolution

of wavelet-involving operations. Also, the wider bandwidth of seismic data improves the

decoupling of parameters in multiparameter FWI [53, 54].

The desired range of low-frequencies is limited by traveltime tomography from one

side and the machinery of seismic acquisition from another. In particular, the background

velocity model derived from tomography compensates for frequencies below 1 Hz [55].

While the frequency content recorded in a generic marine airgun survey drops below

noise level at about 4 Hz [56]. The frequencies falling in-between these estimates

correspond to the gap in the model wavenumber spectrum [57]. Reconstruction of these

low frequencies is the general objective of the proposed low-frequency extrapolation

methods.

Acquiring low-frequency data is a costly venture because it requires low-frequency

sources [58] and sensitive receivers [59]. Nevertheless, the state-of-the-art seismic sur-

veys allow recording such data in the field environment. The ultra-long offset seabed

acquisitions employing an array of ocean-bottom nodes are capable of registering fre-
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quencies as low as 1.5 Hz [60, 61]. A similar range of ultra-low frequencies might be

detected in the marine buoy survey setup [62] where hydrophones are floating under

the water surface attached to a buoy. The advanced marine streamer survey [63] might

record the robust signal with frequency content down to 2.5 Hz. When low frequencies,

e.g. below 1 Hz, are present in the data, the FWI is likely to converge even from a

homogeneous prior. Unfortunately, these data are rarely available in production datasets

due to hardware limitations of seismic sources and receivers or due to the high costs of

an ultra-broadband acquisition (Figure 1.1). The data sample shown in Figure 1.1 is

acquired during marine streamer survey by CGG [63].

(a) (b)

Figure 1.1: Example of a common-shot gather in time (a) and frequency (b) domains.
Low-frequency part of data is missing (magenta box).

Deep learning is a young topic in geophysics compared to physics-based methods

that sometimes date back centuries ago. For this reason, there is a wide scope of new

research directions. Over the past decade, the research community proposed a variety of

methods aiming at data-driven bandwidth extrapolation of seismic data. [64] introduced

a beat-tone inversion to extract low frequencies from the interference of waveforms at

neighboring frequencies. [65] considered a seismogram as a modulated signal and used

a de-modulation operator to extract the low-frequency envelope. [66] analytically ex-

trapolated the low frequencies by decomposing selected seismic records into elementary

events and taking into account inter-trace relations. [67] addressed frequency extrapola-

tion as a convex optimization problem with a total-variation regularization that accounts

for the spatial correlation between traces. Discussions on bandwidth extrapolation in

data-space and image-space approaches are provided in [68], who extrapolated fre-
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quency bandwidth of the data by wavenumber extrapolation of the extended images

with subsequent extended Born modeling.

The feasibility of frequency bandwidth extrapolation was discussed from the wavenum-

ber illumination point of view [69] and by the sparse nature of seismic signal [70]. The

feasibility of trace-to-trace extrapolation in time domain data was explained as a by-

product of super resolution [71, 72]. A frequency-domain approach for data-driven band-

width extrapolation was proposed by [73]. This work considers multi-offset seismic data

(shot gathers) in the frequency domain where each frequency might be represented as a

complex-valued vector. For such a data view, authors designed a non-linear approximator

(deep neural network) to extrapolate single low-frequency data from observed multiple

high-frequency data. In general, the authors showed that smooth mono-frequency data

at multiple offsets is a suitable target for shot-to-shot low-frequency extrapolation with

the subsequent use at acoustic FWI [74, 69]. Meanwhile, [75, 76] built a CNN for

trace-by-trace extrapolation and applied it to time-domain data. Another approach has

been proposed by [77], who demonstrated the extrapolation by jointly processing beat-

tone and raw waveform data using a deep CNN based on the Inception neural network

[78]. An example of low-frequency extrapolation approached by the knowledge transfer

from training on real-world OBN data to towed-streamer data was shown by [79]. I

provide more detailed breakdown of deep learning methods in relevant chapters of this

manuscript.

Methods for reconstruction of the low-wavenumber velocity model

A robust initial velocity model is crucial for FWI convergence when low-frequency data

is not available. Deep learning methods typically focus on end-to-end pipelines for

velocity model building from seismic data since no other framework yet offers similar

capabilities. Specifically, raw or processed seismic data goes as input while the target is

the distribution of model parameters. An ideal pipeline then would eliminate the need

for running costly FWI. Despite promising concepts, these methods are not yet capable

of replacing the traditional inversion pipeline.

Tomography typically assumes a lower resolution of the constructed model of the

subsurface than FWI. Reaching the accuracy of FWI, by a learning-based method, in
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recovering the geological structure is an ambitious goal while not yet been achieved.

Deep learning tomography was proposed [46] and further developed in [80, 81]. Authors

trained deep learning models in synthetic environments to infer subsurface structure

from sparse survey data. Other approaches operating on datasets sampled from and

representing the entire survey were explored in [82, 83, 84, 85, 50]. [86] developed a

hybrid approach where two networks are trained simultaneously to ensure minimization

of the model related functional while meeting wave-field physics constraint. Alternatively,

gradients derived from early iterations of poorly initialized FWI might also be used for

initial model building [87]. The headwind of this approach is primarily due to the high

computational costs of building the training dataset. Generation of each training sample

is such a setup requires running a few iterations of FWI.

The major challenge for these methods is their dependency on the geometry of spe-

cific seismic acquisition. Meaning that the relative position of shot and receiver locations

constraints the generalization capability of these methods on other surveys. An alter-

native to this approach would be using a limited-aperture design of input data that

would lift the exact survey geometry requirement but still demand identical spacing

and source-receiver configuration within the aperture. Assuming that the data from the

limited aperture is sufficient to illuminate the local subsurface, [88] proposed to map

a set of neighboring common-midpoint-gathers into the central vertical elastic profile.

This approach manipulates shot-gather data rather than full-survey data that improve its

applicability to a broader range of domains.

To sum up, the geophysical industry accumulated tremendous amounts of seismic

data during decades of oil exploration. The data-driven framework, where the new

knowledge is extracted either directly from data or its derivatives, offers promising

opportunities for faster processing of seismic data with fewer assumptions made on the

physics of wave phenomena. In the next section, I explain how ideas evolved from my

first encounter with seismic inversion toward the ideas proposed in this thesis.
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1.2 Evolution of ideas

My first encounter with FWI was for educational purposes and in application to a ge-

ological domain with a buried salt body. In particular, I had to run inversion in the

frequency domain and experience how fragile and difficult is the process when started

from a naive assumption about the underlying subsurface. It is known that severe

cycle-skipping artifacts are commonly observed in the regions with massive salt bodies

present in the subsurface due to large mismatches between high-velocity salt bodies

and smooth background velocity model. This was the starting point where I observed

that a frequency-domain FWI initialized from a linear velocity model persistently fails

with a typical pattern of periodic low-velocity spots in the model domain. These spots

might be associated with a local minimum of the objective function for that particular

frequency. The FWI kept failing at each of sufficiently-high mono-frequencies, however,

the pattern of cycle-skipped velocity anomalies was migrating for each of them. Alter-

natively, when started from a realistic initial model, the inversion converged well for all

frequencies. This observation led to an assumption that cycle-skipping artifacts shifted

against their counterparts from other frequencies might indicate unresolved regions of

the subsurface. By iteratively identifying and correcting areas with high variance be-

tween mono-frequency updates, the inversion converged to a satisfactory result.

Another observation from the frequency domain was related to the data, whilst the

previous case focused on the model. This observation was driven by the shape of mono-

frequency common-shot-gather in this domain, which is a complex-valued vector where

each value describes an amplitude at a receiver. In particular, the data at lower frequen-

cies features long-wavelength oscillations rather than those at higher frequencies. This

leads the lower frequencies to be generally more simple and suitable for extrapolation.

At the same time, I also got intrigued by deep learning and decided to implement it as a

mapping between a set of available high frequencies and a single unknown low frequency.

This would assume independence between individual low-frequencies and a rather sim-

ple smooth target. In terms of deep learning, I wanted to translate a 2-channel image

(real and imaginary parts for multiple frequencies) into a 2-channel vector. This ap-

proach showed promise in synthetic setup, however, I decided to switch to time-domain

since this is a natural domain for seismic data and frequency-domain methods are widely
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used in real-world applications.

Aiming for a field data application, I spent some time setting up the time-domain FWI

for streamer survey and put my hands on real marine data. At the same time, I switched

to low-frequency extrapolation in the time domain where the entire shot gathers from

available high frequencies was mapped in its low-frequency counterpart. The major chal-

lenge in this domain is the amplitude variability within the target low-frequency range.

In particular, amplitudes of data filtered below 3 Hz are almost negligible compared to

those from below 5 Hz. Accounting for these weak amplitudes ended up being the key

task in this problem formulation. In terms of deep learning, the application was equiva-

lent to image-to-image translation. Exploring the importance of long-wavelength signals,

I found that inaccurately extrapolated data at such tomographic frequencies(< 2 Hz)

might make FWI fail even worse, compared to a simple linear initial model. However,

reaching superior accuracy in bandwidth extrapolation alone would require impractical

tuning of synthetic dataset generation. I had to modify the initial idea and explored

other ideas such as using various combinations of frequency bands as inputs and targets

to the network, using a generative adversarial framework, and others. Since marine

surveys feature regular geometry for each shot gather, I decided to set the velocity model

underlying each shot location as an auxiliary target. The motivation was to constraint

the solution space of the network by multi-task formulation of the objective function for

training. Another contribution I had to make was the generation of synthetic training

dataset which would be suitable for inference on field data. For this purpose, I made a

wrapper over the existing numerical wave propagation engine and used it to simulate

waveforms in a set of random subsurface initializations using the source wavelet and

survey design extracted from field data. While training data was sufficient, the joint

model and data reconstruction were still unstable. The solution I found was to introduce

another term into the objective function of neural network training that was measuring

the trace-wise correlation between prediction and target. Effectively, this compensated

for geometrical spreading and other amplitude-sensitive differences by comparing nor-

malized traces. Altogether, the multi-task objective aiming to recover both smooth initial

model for inversion as well as low-frequency data delivered generalizability sufficient to

transfer knowledge learned from synthetic data to field data application.
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1.3 Thesis layout

There are three principal parts of the thesis each explaining a method to improve the

initialization of full-waveform inversion. The first part explains a method that acts in

the frequency domain and focuses exclusively on recovering an accurate initial model

for inversion. The second part is dedicated to a method designed for the reconstruction

of missing low-frequency data by a set of weak deep learning models. The last part

combines the objectives of the first two methods and describes a method that aims to

jointly reconstruct time-domain low-frequency seismic data and a smooth background

model sufficient to enable elastic FWI on marine field data.

The detailed breakdown of chapters is as follows:

Chapter 2 introduces a variance-based method for building an initial model for FWI

for scenarios when the subsurface contains a salt body. The proposed iterative approach

manipulates mono-frequency updates from frequency-domain FWI and identifies areas

prone to cycle-skipping. Then it corrects these areas by averaging from the robustly

inverted surroundings. The procedure of detection and correction of the corrupted parts

of the subsurface continues until mono-frequency inversions act coherently well.

Chapter 3 explains a deep learning method for the extrapolation of missing low-

frequency content in seismic data. Specifically, the proposed approach operates mono-

frequency representations of common-shot-gathers aiming to extrapolate one frequency

at a time domain. In practice, it is equivalent to mapping a complex-valued matrix of

available high-frequency data into a vector for single target mono-frequency data at each

receiver position. Moreover, we explain the feasibility of low-frequency extrapolation

from a wavenumber illumination perspective.

Chapter 4 describes a multi-task learning approach for joint recovery of the low-

wavenumber model of the subsurface and low-frequency seismic data. The key idea

is to enable time-domain FWI when neither the initial model for optimization nor low-

frequency data are available. We show that the recovered background velocity model

effectively compensates for inaccuracies in extrapolated ultra-low-frequency data that
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ultimately result in successful inversion in both synthetic and field data setups.

Chapter 5 summarizes contributions reported in the thesis. I also discuss the benefits

and challenges of time and frequency domain formulations when projected onto the

task of low-frequency extrapolation. In the end, I overview potential directions of future

research development.
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Chapter 2

Variance-based model interpolation for improved full-waveform

inversion in the presence of salt bodies

When present in the subsurface salt bodies impact the complexity of wave-equation-based

seismic imaging techniques. Typically, the Born approximation used in every iteration of

least-squares-based inversions is incapable of handling the sharp, high-contrast bound-

aries of salt bodies. This chapter introduces a method for building initial model for FWI

when applied in an environment with the presence of salt bodies. We introduce the

idea of measuring variance between different mono-frequency FWI updates to identify

the problematic regions in the initial subsurface model. The areas with high variance

between several mono-frequency FWI updates highlight areas that are likely to be cor-

rupted by cycle-skipping artifacts. We then correct those areas to improve the initial

point for inversion. The procedure repeats interactively until the coherency between

mono-frequency FWI updates improves.

Results presented in this chapter are adaptation of the paper published in Geophysics

Journal.

Ovcharenko, Oleg, Vladimir Kazei, Daniel Peter, and Tariq Alkhalifah. "Variance-based

model interpolation for improved full-waveform inversion in the presence of salt bodies."

Geophysics 83, no. 5 (2018): R541-R551.
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2.1 Introduction

Challenges in seismic imaging created by the presence of salt are primarily from the high

acoustic impedance contrast and the sharp and steep boundaries between a salt body

and its sedimentary environment. Salt is a mechanically weak and light rock, it thus

“flows” along the weakest conduit when stress is applied [24]. Usually the direction of

this flow is toward the surface where the salt later forms large salt canopies surrounded

by relatively young sediments. Complex salt structures with sharp and steep flanks with

high-velocity areas overriding the slower ones cause illumination issues when imaging

salt-affected targets. Most of the propagating energy is reflected back from the surface

of the salt, which results in insufficient illumination of the areas beneath the salt body.

Successful salt and sub-salt imaging usually requires the integration of geologic knowl-

edge with geophysical data [23] as well as broadband, long-offset and multiazimuth

acquisition [14].

The objective of FWI is to minimize both amplitude and phase differences between

observed and modeled seismic data. For successful inversion the Born approximation

requires the initial velocity model to deliver mismatches in travel times less than half

the period [89]. Larger errors cause cycle-skipping artifacts on the wavepaths specific

to each source-receiver pair. These artifacts in the image domain can be identified as

repeated contrast velocity anomalies that, in turn, lead the inversion to convergence

toward a local minimum on an objective function [90]. Inversion of mono-frequency

data allows features to be resolved at a specific scale. The inversion results from different

mono-frequencies therefore do not match exactly.

When mono-frequency data are modeled, the phase of a harmonic plane wave at

a given point on a wavepath depends on the frequency and travel time. Hence, at

different frequencies, the phases of the waves propagating through the same wavepaths

differ. While minimizing the misfit between observed and modeled data, FWI amends the

velocity model to match the phase shift with its nearest zero crossing at a multiple of 2π.

This phase shift varies at each frequency, causing the data to be fitted differently. These

shifts cause cycle-skipping artifacts to vary from frequency to frequency for a particular

wave.
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Here, we extend the group of gradient-based methods to improve FWI in the presence

of salt bodies. In particular, we propose manipulating updates acquired in parallel from

several FWI iterations at different mono-frequencies rather than just at gradients. We

identify problematic regions based on the variance distribution between these updates.

Then, following [91], we iteratively introduce corrections into these problematic regions

in the model, leading FWI to better convergence. As a result, the proposed technique

provides a more robust initial velocity model for conventional FWI.

In the following, we first discuss the general features of cost functions. We then

present a method for variance-based salt body reconstruction using FWI. Finally we

demonstrate the applicability of our method using crops from the left and central parts

of the BP 2004 velocity benchmark model [92] and using a cross section of the SEAM

Phase I model [93].

2.2 Theory

Full-waveform inversion is a technique that performs high-resolution subsurface imaging

by minimizing the difference between modeled and observed seismic data. Theoretically,

FWI performs a search in the model space to find a subsurface velocity model that pro-

vides a minimum value of the so-called misfit or objective function, J [3, 90]. The most

familiar and simple cost function is defined by the squared L2 norm of the differences

between observed, d0, and generated, d, seismic data for model m:

J (m) = ||d(m)− d0||22. (2.1)

The function, J , is generally nonlinear [94] and non-convex with multiple local minima

[95]. Gradient-based optimizations therefore pose a major challenge due to the fact that

a search could prematurely stop in one of minima (Figure 2.1) and cause selection of an

improper velocity model.

A popular technique to improve data fit delivered by FWI is the multiscale approach

proposed by [26]. The multiscale approach implies successive inversions of low-pass-
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Figure 2.1: Data misfit of the linear velocity model approaching the true central part of
the BP 2004 model as κv0 + λv. Dark zones are the minima where inversion could stall
prior to reaching the proper result.

filtered data, d0,ω, from lower to higher frequencies, ω:

J (m) ≈
∑
ω

J̃ (m, ω) =
∑
ω

||d(m, ω)− d0(ω)||22 (2.2)

Cost functions, J̃ , in inversions of low-frequency data tend to have local minima that

are farther apart than cost functions at higher frequencies, as schematically illustrated in

Figure 2.2. This allows an optimization technique to converge to a lower minimum of J

and, thus, to recover an improved low-wavenumber model. Later, this low-wavenumber

subsurface image is used as a starting model for FWI at higher frequencies to recover

high-resolution features of the model. However, in the absence of low frequencies this

approach is less reliable for complex velocity models. Even in the presence of low

frequencies, the complexity of the model may require an impractical number of FWI

iterations.

Within the multiscale approach, it is common practice to simultaneously invert for

several neighboring frequencies instead of a single one [96, 97]. According to this

practice, the whole range of frequencies is split into groups (bands) and then gradients

from different frequencies in the same band are summed at each iteration. This provides
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Figure 2.2: Schematic projection of local minima of the objective function onto the model
domain: Given an initial model (left), objective functions, J̃ , at different frequencies
(central column) will guide inversions from the initial model (indicated by the blue line)
to the closest local minimum (red line), where the inversion stops. Corresponding final
velocity models and variance distribution between them are plotted in the images in the
right column.
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an enhanced signal-to-noise ratio in the gradient, thus improving the convergence when

dealing with models that generate complex wave phenomena.

A lack of low-frequency data or of a decent initial model might result in synthetic data

that are greater than a half-cycle away from observed data [18]. This leads inversions to

converge to a local minimum, which in the model domain could be associated with the

presence of cycle-skipping artifacts [90]. Long-offset data that illuminates deep parts of

the model are generally the most vulnerable to cycle-skipping issues [95]. This happens

due to larger phase shifts accumulated when seismic energy follows longer wavepaths.

Deep targets are therefore more likely to be inverted erroneously.

In salt-body models, a significant part of the wave energy is reflected back from the

top of the salt without propagating in the salt body. This reflection contributes to the

finding that the top of the salt is well resolved in most FWI cases whereas the sub-salt

areas become corrupted. Another scenario occurs when the margins of the salt body are

properly identified from reflections but the inner content of the salt cannot be uniquely

resolved. Corresponding objective functions of inversions of salt-body models at different

single frequencies differ significantly in the same model. The inversion could prematurely

stall in a local minimum of the objective function rather than searching for the best

model. An important observation is that, in the synthetic case, the global minimum

remains the same for misfit functions at all frequencies, whereas the local minima are

different. Whenever the data are corrupted by noise the global minimum can shift when

the frequency is changed, but variations in the local minima will, most likely, be larger.

When the L2 norm of the noise is higher than half of the difference between the misfit

functional values at global and local minima, several global minima can potentially exist

for a single misfit functional. Stacking several neighboring frequencies helps in such a

case [96].

In our approach, we exploit the invariance of the global minimum for a selection

of carefully determined frequencies. Consider a set of successive mono-frequency data,

starting from 3 Hz which is feasible to be collected in the field with good signal-to-

noise ratio [59]. Without very low-frequency data, such as below 2 Hz, independent

inversions at each monofrequency will stop at their own local minimum in the vicinity of

a point on the objective function corresponding to the initial guess, as is schematically

shown in Figure 2.2. These minima are different due to the lack of global convexity of
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standard FWI functionals. The mismatch in the stopping points in the objective function

of different frequencies indicates the convergence of FWI to different subsurface models.

The key concept of our proposed approach is the measurement of mismatches between

corresponding model updates. To this end, we use the variance between velocities at

every point in the models.

We assume that the presence of cycle-skipping artifacts in the image domain indicates

a local minimum of the objective function. We compare model updates computed in

parallel for different single frequencies, using a variance criterion to identify regions

in the image where the optimization has stalled with different model results. For salt-

body reconstructions, we correct selected variable areas using the proposed “flooding"

technique in the next section and repeat the process to obtain an improved initial model

for FWI.

2.3 Method

In our method we use the variance between the resulting models at different frequencies

to guide the flooding process. This includes identifying a sufficiently accurate starting

model.

2.3.1 Variance-based salt flooding

Model updates from different frequencies deviate from each other. By comparing these

updates, we can localize regions associated with global and local minima in the model

domain. For this purpose, we compute in parallel updated subsurface models, mk, for

a number, K, of distinct frequencies using FWI. Figure 2.3b-c shows such models, mk,

for one of the chosen test cases. The number of distinct frequencies is arbitrary, but our

tests revealed that four distinct frequencies are usually sufficient.

The selection of frequencies is motivated by the need to have variation in the cycle-

skipping artifacts between the updates, while the updates for the easily resolvable areas

should be similar. The frequencies therefore should not be too close to each other

to detect the variation and not too far apart to have similar wavenumber coverage.

Because a constant ratio between subsequent frequencies is natural for frequency-domain

inversions [94, 95], we scaled the frequencies with a small coefficient inside our bands.
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Figure 2.3: Central part of the BP 2004 benchmark velocity model: (a) the true velocity
model; updated velocity models from FWI at minimum 3 Hz (b) and maximum 4.12 Hz
frequencies (c) used for flooding; (d) weighted average between model updates from
different single frequencies. Repeated contrast velocity intrusions are cycle-skipping
artifacts caused by a significant mismatch between the initial and true velocity models.
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We constrained the scaling ratio such that the maximum frequency used for flooding,

fmax, would not exceed double the minimum frequency fmin. This allows some similarity

of updates from multiples of fmin to be mitigated, which we observed in our experiments.

This similarity can be roughly explained in the following way. When the frequency is

doubled the phase shifts between the observed and modeled data are doubled. As a

consequence, if the phase shift was very close to 2π for frequency f , it would be close

to 4π for the frequency 2f and the updates would be very similar in approximately half

of the cases. This suggests that the updates from these frequencies are very likely to be

similar even for cycle-skipped areas.

This requirement suggests that the frequencies, fk, required for flooding should be

distributed in the range fk ∈ [fmin . . . 2fmin). The coefficient that allows K = 4

frequencies, fk, in this band is then defined

fmax
fmin

< 2, fk+1/fk <
3
√

2 ≈ 1.259. (2.3)

To satisfy equation 2.3, we take

fk+1/fk = 0.9−1 . . . . (2.4)

An example of this approach is visualized in Figure 2.4.

Figure 2.4: The dependence of cycle-skipping artifacts on local wavelengths. Frequencies
(left column) increase from top to bottom with corresponding wavelengths (central
column) and associated cycle-skipping artifacts (right column) in velocity models.

Updated models, mk, are together passed through the following three steps of the

flooding procedure:
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1. Weighted model average. Due to the local nature of cycle-skipping artifacts, they

should vary in updates from different frequencies. To enhance regions that match among

most models and to diminish those that are different, we sum up all models and find the

weighted average of the FWI updates. As a result, we create a background model, mb,

in which cycle-skipping artifacts are reduced and well-defined features are enhanced:

mb =

K∑
k=1

mkwk

K∑
i=1

wi

, wk =
1

fk
, (2.5)

where mk is the model update from FWI at frequency fk. The weighting term, wk, ob-

tains its largest value at the lowest frequency. Such averaging permits data from the

lower frequencies to contribute more to the averaging because low-frequency content

is less corrupted by numerical artifacts and provides, in general, smoother models. Fig-

ure 2.5 presents a weighted average model for the BP test case.

2. Weighted model variance. Because variance is a measure that indicates how

much a variable alternates from its weighted average value, high values indicate large

differences in model updates. High-variance areas mostly appear near or within salt

bodies where cycle-skipping is the most prominent (Figure 2.6(a)). These uncertain

areas are prone to be problematic and thus require additional processing to weaken

the artifacts and to help to avoid local minima. We find the variance distribution, V,

point-wise among the model updates:

V =

K∑
k=1

wk (mk −mb)
2

K∑
i=1

wi

, (2.6)

where wk has the same weighting term that was used to find the background model, mb,

and mk are the model updates for frequencies fk.

Variable variance threshold. Let ε ∈ [0, 1] be a coefficient that separates a normal-

ized variance distribution into normal and anomalous parts (Figure 2.6(b)). Anomalous

parts are those where the variance among the updated models is relatively high, imply-
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ing that these areas could be associated with local minima. Anomalous regions shape a

“variance mask”, Vm, which overlaps “suspicious” regions:

Vm =


1, if V

Vmax > ε

0, otherwise
(2.7)

We change the threshold, ε, on the fly depending on the ratio between the mean

V avg and the maximum V max values of the original variance distribution, V. When the

optimization technique finds the global minimum, the minimum is often stationary for all

frequencies, fk. This implies that the difference between updates is small and therefore

the average and maximum values of the variance distribution are close to each other. For

all flooding iterations, subscripted as i, we store the mean variance distribution, V avg
i ,

normalized by its maximum, V max
i . Then, we modify the threshold, εn, depending on

this ratio and its history. We define anomalous areas in the model as those that meet the

relation given by equation 2.7, where:

εn = ε0

max
i=1,n

V̂ avg
i

V̂ avg
n

, V̂ avg =
V avg

V max
(2.8)

Threshold, εn, is computed at each flooding iteration, n, and increases when the

mean and maximum values of the variance distribution are close. Generally, εn increases

with iterations as updates at given different frequencies become increasingly similar as

model converges and V̂ avg
n decreases. The initial threshold, ε0, is set to the empirical

value 0.2 found by the examination of the initial variance distribution, V.

3. Flooding of high-variance areas. All regions covered by the variance mask, Vm,

are point-wise filled with the power mean [98] of the values found within a circle with

a radius of half a local wavelength. We assume that such a radius corresponds to the

average size of a local cycle-skipping artifact. The power of the mean, p, defines how

biased the result will be toward higher values. The empirical rule is to set p equal to the

signal-to-noise ratio (SNR) in the observed data. SNR is defined as the ratio between

the energies of the signal and the noise. The maximum local wavelength at each point
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of the model is determined by

Λmax =
mb

fmin
, (2.9)

where mb is the weighted average background velocity model and fmin is the minimal

frequency at which inversions are performed. The point-wise expression for flooding

with a power mean is

m
(i,j)
b

i,j∈Vm

=
p

√√√√∑k

∑
l

(
m

(k,l)
b

)p∑
k

∑
l 1

, k, l ∈ S

S :

√
(i− k)2 + (j − l)2 ≤

λmaxij

2
.

(2.10)

Depending on SNR, there are three natural outcomes from the equation 2.10. When

the data are noise free, the power of the mean p→∞ delivers a maximum value from

circle S to model update m(i,j)
b . Whereas when the signal and noise are indistinguishable,

p = 1, the output is an arithmetic average within the circle. The higher the SNR, the

closer the value of the update to the maximum within the circle. The high-variance areas

in Figure 2.6(a) are processed according equation 2.10. This allows the algorithm to

average the cycle-skipping artifacts with relevant content from inside the circle region.

A sample of a resulting flooded velocity update after the first flooding iteration is shown

in Figure 2.7.
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Figure 2.5: Model average mb built as weighted average between model updates mk

from different single frequencies fk.

We applied this three-step flooding algorithm to results from FWIs computed in
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Figure 2.6: Model variance distribution: (a) the variance distribution among selected
FWI updates at 3.0, 3.33, 3.7 and 4.12 Hz after the first 15 L-BFGS iterations; (b) the
variance threshold, ε = 0.2, where all areas with values above the threshold ε (red plane)
are considered as anomalous.
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Figure 2.7: Salt flooding: the velocity model after the first run of salt flooding procedure
on the central part of the BP 2004 velocity model.
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parallel at single frequencies. We iteratively repeated the three steps until the introduced

V avg/V max ratio stagnated.

2.3.2 Selection of the starting model

The initial model for FWI should provide a fair approximation of the general background

of the area under study. Here, we used a one-dimensional velocity model with a water

layer on top as the initial model. The suitable slope, β, of the linear model was found by

brute-force search. This minimizes the misfit between observed and modeled data. An

analytical function describing the set of initial models can be written as

v(z) = vw + β max (0, z − w) , (2.11)

where vw is the velocity in the water layer, w is the known water depth, and β is the

variable slope of the one-dimensional velocity model. The gradient could start either

from a flat sea floor, or from real bathymetry or be a combination of two linear models.

2.4 Results

We demonstrate the applicability of our variance-based salt flooding technique in a

two-dimensional, isotropic acoustic medium mimicking geological structures of the deep-

water area of the Gulf of Mexico. Our first and second numerical examples demonstrate

implementation of the method with synthetic noise-free and noisy data (SNR=10) gener-

ated from sections from the central and left parts of the BP 2004 model [92], respectively.

In the last example, we operate with noise-contaminated data (SNR=5) generated for

the east-west cross section of the SEAM Phase I velocity model [93]. Moreover, we

assume the water depth and the velocity to be known.

2.4.1 Central part of BP 2004

The central part of the BP 2004 model is challenging for FWI due to a massive salt body

with steep flanks and a hidden low-velocity intrusion (Figure 2.3(a)). This intrusion is

a potential trap for hydrocarbons. The primary goal is therefore to gain a satisfactory
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image of the area below the salt body. The acquisition involved 241 receivers and 121

sources uniformly distributed on the surface with respective spacing of 40 and 80 meters.

The size of the submodel was 3.5 km × 12 km; the model was discretized by a Cartesian

uniform grid 175 × 600 with 20 m spacing in both directions. The frequency range for

multiscale FWI was from 3 to 7.46 Hz with a multiplicative increment of 1.2.

The initial model for mono-frequency multiscale FWI was built using the proposed salt

flooding technique. As input, the algorithm was given velocity updates from four single

frequencies that were expected to provide optimal variance content. These frequencies

were sampled according to equation 2.4 from the minimum available frequency of 3 Hz

with the step size equivalent to the change in local wavelengths of 10%. The resulting

set of frequencies was 3.0, 3.33, 3.7 and 4.12 Hz. The initial variance threshold ε0

was 0.2. Any variation between the updates above this threshold was considered to

be anomalous. This initial value was roughly selected by examination of the variance

distribution (Figure 2.6(b)) such that it would separate the dominant peak.

Several input models to the flooding routine are shown in Figure 2.3b-c. These are

the updates from FWI at the lowest and highest single frequencies after 15 iterations

using a limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [99].

Cycle-skipping artifacts (repeated velocity anomalies) are clearly visible on each updated

model.

At the lowest of available frequencies used for the flooding, we performed forward

modeling on a coarser mesh to ensure that there were at least ten grid points per shortest

wavelength in the model. This is equivalent to 88× 300 grid points with 40 m spacing.

This problem size reduction leads to faster computation for FWI only within the three-

step flooding procedure. We start our flooding approach considering the background

model shown in Figure 2.8(a).

The variance distribution between updates is the key ingredient of the proposed

approach. This distribution pinpoints regions in the model that were reconstructed in

the most ambiguous way. Thus, we compute the variance between the updates from

a set of single frequencies according to equation 2.6. Following the iterative flooding

workflow described in the previous section, we reconstruct the shape of the salt body

with its principal features, such as its internal cavity. The resulting starting model for
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multiscale FWI is shown on Figure 2.8(b). It took 20 runs of the three-step flooding

procedure to build this model. The proposed technique requires more iterations to

converge when applied to noise-free data. With such data, a variance mask likely covers

accurately a high-variance region of the velocity model where most of the cycle-skipping

artifacts occurred. The flooding procedure performs weighted averaging inside a circle

area with a radius of half a local wavelength. Thus, the more homogeneous area is

covered by the circle, the less changes are introduced by weighted averaging. As a result,

it either takes longer to populate the anomalous areas according to equation 2.10 or the

process stagnates when the artifacts from distinct frequencies align completely.
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Figure 2.8: Starting models for multiscale FWI for the central part of the BP 2004
model: (a) the initial, one-dimensional velocity model with a constant gradient; (b)
the velocity model obtained after 20 flooding iterations using our variance-based salt
flooding technique. Numerous flooding runs are needed for noise-free data.

Non-regularized conventional multiscale FWI including a series of successive mono-

frequency inversions fails when started from a one-dimensional initial model (Figure 2.8(a)).

As expected, the top of the salt is correctly constructed whereas other parts are corrupted

by cycle-skipping artifacts (Figure 2.9(a)). In contrast, our proposed iterative flooding

approach allows for the preparation of an adequate starting model (Figure 2.8(b)) that

leads FWI to a better final result (Figure 2.9(b)). As shown in Figure 2.9(b), the low-

velocity anomaly beneath the salt body surrounded by thin salt “legs” is well resolved.

Usually, such thin salt intrusions beneath a massive salt body can hardly be identified by

conventional FWI. The mismatch between the inverted model and the true model in the

right bottom corner is caused by poor illumination in that area.
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Figure 2.9: The resulting velocity model for the central part of the BP 2004 model after
30 iterations of conventional FWI at a range of frequencies from 3 to 7.46 Hz, starting
from the (a) linear and (b) flooded initial models.

2.4.2 Left part of BP 2004

Potential hydrocarbon reservoirs in the left part of the BP 2004 velocity model (Fig-

ure 2.10(a)) can be found immediately beneath an elongated salt body [92]. The

impedance contrast at these areas is higher than elsewhere in the model, which sug-

gests multiple difficulties when imaging these targets. The crop is 2.5 km × 13 km in

size and it is also discretized by a uniform Cartesian grid with 20 m spacing (175× 650

grid points). The acquisition involved 314 receivers and 158 sources uniformly dis-

tributed along the surface with respective spacing of 40 and 80 m. SNR was set to 10,

which is relatively high for surface seismic.

We start our flooding approach based on the background model shown in Figure 2.10(c).

The highest variance between the updates occurred in the areas below the salt (see Fig-

ure 2.10(b)). This variance indicates that there is uncertainty in the inversion results in

these areas. After 12 runs of the flooding procedure, the mean and maximum values of

the variance distribution grew close and the stopping criterion for the flooding loop was

reached. The flooded velocity model is shown in Figure 2.10(d). In the noise-free case,

the number of FWI iterations at each flooding step varies because the exit criterion is the

stagnation of the functional decrease. In the presence of noise (SNR=10), this approach

does not work well. We therefore set a constant number of FWI iterations preceding each

flooding iteration. In this example, each flooding run required 10 L-BFGS iterations as



45

True

0 2 4 6 8 10 12

km

0

1

2

3

k
m

2

3

4

k
m

/s

(a)
Variance

0 2 4 6 8 10 12

km

0

1

2

3

k
m

0

0.5

1

(b)
Initial

0 2 4 6 8 10 12

km

0

1

2

3

k
m

2

3

4

k
m

/s

(c)
After flooding

0 2 4 6 8 10 12

km

0

1

2

3

k
m

2

3

4

k
m

/s

(d)

Figure 2.10: Left part of the BP 2004 benchmark velocity model: (a) the true velocity
model; (b) the variance distribution among updates from 3.0 to 4.12 Hz used for salt
flooding; (c) the initial, one-dimensional velocity model with a constant gradient; (d)
the velocity model obtained after 12 flooding iterations using our variance-based salt
flooding technique.
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this many iterations delivered stagnation of the gradient. The flooding was performed on

a sparse, resampled computational grid with 88× 325 grid points due to the involvement

of only long-wavelength data.
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Figure 2.11: The resulting velocity model for the left part of the BP 2004 model after
30 iterations of conventional FWI at 3–7.46 Hz, starting from the (a) linear and (b)
flooded initial models.

Conventional multiscale FWI with total variation (TV) regularization [100] starting

from 1D velocity model (Figure 2.10(c)) succeeded in imaging the top of the salt, but

failed to reveal the sub-salt structures (Figure 2.11(a)). Cycle-skipping artifacts were

easy to discern within the salt body where the initial velocity model differs significantly

from the true one. Given that we used the flooded velocity model (Figure 2.10(d))

as the initial model for multiscale FWI, we could recover both the salt body and the

area beneath the salt. Despite the relatively low frequencies used for FWI, most short-

wavelength features could be distinguished in the final inversion result (Figure 2.11(b)).

One of the targeted low-velocity areas below the salt, likely a reservoir, is inverted in its

correct location and can clearly be identified. The small reservoir to the left in the area

below the salt could not be recovered probably due to the presence of noise in the data.

2.4.3 Cross-section of SEAM Phase I

The subsurface model built on the SEAM Phase I dataset mimics a realistic geology of a

salt-containing region in the Gulf of Mexico [93]. There is a massive salt body with steep

flanks embedded into a layered sediment environment (Figure 2.12(a)). We implement
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the variance-based technique on a resampled 2D subset of the model taken in the east-

west direction from North 23.9 km with dimensions of 3 km × 8 km. We run FWI from

3 to 10 Hz. The target area was the sedimentary basin hidden beneath a hanging salt

flank.

The model was discretized with 150 × 438 grid points with 20 m spacing. The

acquisition involved 106 receivers and 53 sources uniformly distributed along the surface

with respective spacing of 40 and 80 m. The presence of noise is ubiquitous in real data

applications, we therefore added random Gaussian noise with SNR of 5 to the data.

We initiated the flooding procedure on a sparse grid (75 × 298 grid points) starting

from a linear velocity model with known sea floor bathymetry (Figure 2.12(c)). During

seven flooding runs we performed 15 iterations of mono-frequency non-regularized FWI

in parallel at 3.0, 3.33, 3.7 and 4.12 Hz. The algorithm computed variance between up-

dated models from listed frequencies and applied corrections according to equation 2.10,

which ultimately resulted in the low-wavenumber initial model shown in Figure 2.12(d).

The variance distribution before the first iteration of the flooding procedure was dom-

inated by inconsistencies that were located primarily in the top part of the salt body

(Figure 2.12(b)). This was because the most significant velocity contrasts occurred there.

The variance threshold ε0 was 0.2. The number of FWI iterations was selected after

examination of the data misfit functions and remained constant for all inversions at all

frequencies (Figure 2.13).

To provide full-scale FWI, we ran successive inversions of mono-frequency data at

3.00, 3.6, 4.32, 5.18, 6.22, 7.46 and 10.75 Hz in the framework of conventional mul-

tiscale FWI [94]. Conventional FWI regularized with TV failed due to the lack of low

frequencies (Figure 2.14(a)). However, it could capture top of the salt although deeper

parts, such as the complex basement and the salt body itself were not captured.

When started from the initial model produced by the flooding procedure, the final

result from the TV-regularized inversion was improved (Figure 2.14(b)). While the

resulting model is still mildly blurry, all boundaries of the main salt body, and the high-

velocity arch in the basement are resolved in the final model.
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Figure 2.12: Cross section of the SEAM Phase I velocity model: (a) the true velocity
model; (b) the variance distribution among updates from 3.0 to 4.12 Hz used for salt
flooding; (c) the initial, one-dimensional velocity model with a constant gradient; (d) the
velocity model obtained after 7 flooding iterations using our variance-based salt flooding
technique.
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Figure 2.13: Misfit functions decay during flooding iterations. Each spike except the first
one reflects a flooding run with the preceding 15 iterations of mono-frequency FWI on a
coarse grid at 3.0, 3.33, 3.7 and 4.12 Hz for a cross section of the SEAM Phase I model.
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Figure 2.14: The resulting velocity model for the cross section of the SEAM Phase I model
after a few iterations of FWI with total-variation regularization at each listed frequency
ranging from 3 to 7.46 Hz and SNR of 5, starting from the (a) linear and (b) flooded
initial models.



50

2.5 Discussion

The proposed variance-based reconstruction technique extends the applicability of con-

ventional FWI to complex salt bodies. As input, it uses model updates at certain discrete

frequencies. As output, the technique provides an alternative model update that can be

used as an initial model for the next FWI iteration. The proposed procedure can be easily

embedded into any conventional FWI routine, regardless of the solver or computational

domain because only model updates for corresponding single frequencies are required

as input.

When forward modeling is performed in the time domain, on-the-fly discrete Fourier

transform [101] can be used to extract specific frequency content from the data. Apart

from a set of standard parameters involved in frequency-domain FWI, we used the

following additional tuning parameters in the proposed procedure:

Number of FWI iterations before flooding. We used L-BFGS with a stopping cri-

terion given by the relative decrease in the functional that was less than 10−4. This

empirically resulted in 10 to 20 L-BFGS iterations per flooding cycle. This parameter

is dependent on the FWI realization and problem. It should therefore be determined

directly from examining a specific misfit function. The number of iterations depends

on the choice of optimization algorithm. In a reasonably complex model, quasi-Newton

methods are typically the best choice for FWI implementation. A truncated Newton

method in some cases can be a better option to handle multiscattering [102]. Potentially,

a single but computationally more expensive iteration of the truncated Newton could

replace several L-BFGS iterations currently used for variance map construction. Another

option would be to include multi-scattering in the inversion as suggested by [103].

Step size between single frequencies. The step size has to be sufficient to cause

a visible shift of the cycle-skipping artifacts. We scaled the frequencies such that the

wavelength at the same location for the next frequency would be 0.9 of the previous one,

which provides a bound on the frequency scaling factor that depends on the number of

frequencies.

Initial variance threshold. The parameter ε0 ∈ [0, 1] separates normal and anoma-

lous values in the variance distribution. An arbitrary case can be found by algorithmic or

visual examination of the variance distribution such that the ε plane cuts off the domi-
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nating high-amplitude values. From our tests, an empirical value of 0.2 is recommended.

This threshold should be amended if the flooding process does not converge.

Power of the mean. According to equation 2.10, parameter p indicates how biased

the flooding will be toward higher values. We set p equal to SNR in the observed data as

noise adds ambiguity to the inversion, which then suggests that the averaging in unstable

areas be milder to avoid unrealistic high values in the model.

Number of flooding iterations. The process should stop automatically when the

high-variance regions are gone. Equation 2.8 introduces a variance-dependent function

that stagnates with iterations when the maximum and mean values of the variance distri-

bution converge. The relative decrease in the result of equation 2.8 serves as a stopping

criterion for flooding iterations.

In total, there is only one purely user-defined parameter – the initial variance thresh-

old, ε0 ∈ [0, 1], whose recommended default value is 0.2. The number of FWI iterations

before flooding depends on the optimization technique used. The step between frequen-

cies is selected from the empirical wavelength ratio (equation 2.4). The iterative flooding

procedure terminates automatically when the variance distribution in the model appears

to be close to homogeneous.

The computational cost of our proposed variance-based salt-flooding procedure is

determined by the lowest frequency available in the data. The flooding routine itself only

computes the variance between the updated models and then performs correction on the

most unstable areas. The execution time of three-step flooding iteration in most cases is

therefore negligible. Even for large models this process takes only a few seconds. The

major computational cost is introduced by the preceding iterations of the optimization

technique that searches for minima of the objective functions in the implemented FWI

routine. The numerous FWI iterations required for the salt flooding procedure should

be performed on a sparse computational grid. This is because only data in the vicinity

of the lowest available frequency are required to prepare the starting velocity model for

full-scale FWI. The proposed approach is only expected to produce an adequate initial

model for full-scale FWI, therefore only lowest available frequencies need to be modeled

on a coarse mesh. Model coarsening dramatically reduces the computational costs of

FWI iterations preceding the flooding procedure, making the proposed workflow feasible.
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All results presented in this work were computed on a laptop with a quad-core CPU. The

complete iterative salt flooding procedure on a sparse grid for each of the examples took

between five and ten minutes whereas the subsequent multiscale FWI on a dense grid

took about 40 minutes.

When there is noise in the observed data, the performance of the variance-based

approach is improved. This is because more flooding iterations are likely necessary with

the noise-free data for the algorithm to interpolate from the robustly defined regions

into the ones covered by the variance mask.

To verify if the model created by the flooding procedure is ready for FWI, some

quality control (QC) procedures might be necessary. These may include examination

of extended images or angle gathers [104] to avoid misinterpretation of salt bodies in

practice.

As a final remark, the starting one-dimensional velocity model for FWI has to be

reasonable (as is the case for any other model used for FWI). A completely inconsistent

initial guess of the velocity would inhibit FWI from recovering any part of the salt body

that should be partly resolved in realistic cases, such as the top of the salt. In a worst

case scenario, the variance-based approach will not work properly when an adequate

variance distribution among the updates cannot be retrieved, which may happen when

several iterations of FWI are not able to provide any information about the salt body.

Nevertheless, the use of robust data at the lowest available frequency together with the

salt flooding procedure on a corresponding coarse mesh allows us to obtain an adequate

initial model for FWI in a cost-effective way.

2.6 Conclusions

Conventional FWI fails in the presence of the salt bodies without the aid of low-frequency

data. Here, we proposed a new approach to frequency-domain FWI that allows us to

perform inversions without low frequencies, without significant modifications to the

optimization workflow and with only a moderate increase in computational complexity.

The novelty of the approach lies in looking at nonlinear updates of FWI from several

single frequencies rather than just at gradients or migration images. These updates show

significant similarity if the model is mature enough to be handled by Born approximation,
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unlike reverse-time migration images that are different for different frequencies in a

complicated medium. The variance distribution between these updates is used as an

indicator to reveal areas where FWI fails. We update these areas through a simple,

automated flooding process with the power mean of velocities from nearby locations.

The only inputs for a single iteration of the proposed procedure are several model

updates from conventional FWI. Incorporating our flooding procedure into any existing

inversion routine is therefore simple. Designed to work with the lowest frequencies

available, the procedure allows the use of sparser grids for modeling and inversion for

the preparation of an improved initial model to be used at later FWI stages. Moreover,

these additional computational costs are negligible within a complete multi-scale FWI

scenario. The proposed technique could be easily extended to 3D and more realistic

physics as it operates exclusively in the model space.
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Chapter 3

Deep learning for low-frequency extrapolation from multi-offset

seismic data

Extrapolation of low-frequency data is an alternative to initial model building discussed

in the previous chapter. During inversion, the low-frequency seismic data might compen-

sate for the missing accurate initial model for FWI by recovering the low-wavenumber

features of the subsurface. However, it is challenging to acquire field data with an ap-

propriate signal-to-noise ratio in the low-frequency part of the spectrum. This chapter

explains a method for low-frequency extrapolation in frequency domain seismic data

using deep learning. We address the same problem of FWI initialization in the pres-

ence of salt bodies as in previous chapter but approaching it from data rather than model

prospective. In wavenumber illumination framework we explain the connection between

high- and low-frequency data at different offsets. We also show that lower frequencies

are easier to extrapolate since these tend to be smooth long-wavelength functions. Moti-

vated by this observation we train an ensemble of weak learners each extrapolating data

for single frequency.

Results presented in this chapter are adaptation of the paper published in Geophysics

Journal.

Ovcharenko, Oleg, Vladimir Kazei, Mahesh Kalita, Daniel Peter, and Tariq Alkhalifah.

"Deep learning for low-frequency extrapolation from multioffset seismic data." Geophysics

84, no. 6 (2019): R989-R1001.



55

3.1 Introduction

Delineation of subsurface structures from a complicated seismic dataset, in particular

of salt and subsalt regions, is a very challenging task [105, 106], with challenges at

every stage, starting from the velocity model building process to migration, followed

by its interpretation [107, 108]. To retrieve subsurface parameters from seismic data,

full-waveform inversion (FWI) [2, 3, 4] proves to be a powerful tomography technique

to invert for high-resolution images. It updates an initial model, that often lacks salt-

body information, using the gradient of a data misfit functional, through an iterative

optimization strategy. These nonlinear gradient-based optimization schemes allow to

substantially deviate from the initial model assumptions and introduce strong subsalt

features. Nevertheless, due to cycle-skipping problems, they often fail to retrieve reliable

models as they converge to local minima rather than finding the global one, specifically

when the initial model is too far from the true subsurface structure. Among the many

challenging factors such as strong multiples, incomplete acquisition geometries and poor

illumination due to complex overburden velocities, the absence of low frequencies in

recorded seismic data contributes the most to the failure of FWI [26]. In this study, we

aim to assist FWI by reconstructing the missing low frequencies, using an artificial neural

network (ANN), which is a promising data-driven approach within the machine learning

framework.

Seismic acquisition procedures and logistics have been significantly improved over

the last two decades. However, they often fail to record the temporal low-frequency

seismic data with good signal-to-noise ratio (SNR) [59]. Seismic vibrators and their

required mechanical and hydraulic systems are still limited in their ability to transmit

sufficient seismic low frequency energy into the subsurface. In addition to ambient noise,

the recording unit has its own system noise (thermal and quantization) that aggravates

SNR of low-frequency components in data. This absence of usable low frequencies in

seismic datasets leads FWI to reconstruct inaccurate long-scale features, eventually yield-

ing to a local, rather than global, minimum model. To avoid local minima solutions,

conventional FWI algorithms aim either to change the misfit function [7, 10], mod-

ify the gradient [21, 22, 109], incorporate model domain regularization [110, 11], or

extrapolate the missing low-frequency part of the spectrum.
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With the recent advent of deep learning and artificial intelligence applications, ma-

chine learning approaches have emerged as powerful tools in data analytics. Our pro-

posed method aims at extrapolating missing low frequencies by employing convolutional

neural networks (CNN), using a deep learning approach.

Here, we build on our previous work [73] by extending the neural network approach

to deep CNNs and by further investigating its theoretical limits. Since it is well established

in the FWI community, that long offsets can, to some extent, replace low frequencies

[111, 112], we discuss the advantages of multi-offset (shot gather) data extrapolation

from a theoretical point of view, and evaluate a 2D CNN algorithm for this purpose.

By training a deep CNN on general subsalt models, we highlight the subtleties in

such deep learning techniques, using on physics-based data inferences and the sampling

limitations we may face in representing the associated model space. We then extrapolate

missing low frequencies of seismic shot gathers in the frequency domain for different ac-

quisitions. With those artificially enhanced datasets with low frequencies, we investigate

the potential within a numerical benchmark model to invert long-scalelength features of

a specific subsalt model. We start with the theory section discussing the relation between

model-wavenumber and data-frequency spectra, followed by a detailed description of the

deep learning framework in our study. To show the versatility of our proposed method,

we consider datasets of BP-2004 and SEAM models in which the minimum available

frequency is 2 Hz, and where the data inference is conducted with the same deep CNN

to extrapolate lower frequency sampling points.

3.2 Theory

For low-frequency extrapolation, any data inference technique is not only limited by

acquisition geometry and instrumentation, but also by the physics of seismic wave prop-

agation. Thus, let us first derive a simple theoretical model for frequency extrapolation,

based on the wavenumber illumination theory. To simplify the theoretical framework,

we only consider acoustic waves hereafter.

In the frequency domain, the pressure wavefield p(x, ω) of a point source located at
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xs satisfies the Helmholtz equation

(∆x +
ω2

v2(x)
)p(x, ω) = δ(x− xs)s(ω), (3.1)

with ∆x ≡
∑

i
∂2

∂xi
, and where ω denotes the angular frequency. Given a source signature

s(ω) and a velocity model v(x), equation 3.1 determines the solution of p. Source

signatures can, in principle, be estimated from data [113]. Therefore, we assume s(ω)

to be known and normalized at frequencies used for the extrapolation. Without further

restriction, we set s(ω) = 1 for each frequency ω. In general, s(ω) can be set to different

values at lower frequencies, e.g., to mimic a Ricker wavelet. Exact locations of source

and receivers are also known in most exploration setups. Therefore, if the true velocity

model v(x) and exact physics of wave propagation in the associated rock materials are

known, low frequencies can simply be modeled by numerical methods.

Analysis of fully-nonlinear seismic inverse problem is a major challenge. In the

following, we consider the Born approximation [114] for perturbed wavefields in a

homogeneous model where data and model spectra can be directly related [115, 57,

111, 116, 117, 18, 118, 54, 119]. We find the perturbed trace at receiver g by

δp(s,g, ω) ∝ δv(K) (3.2)

where s and g are unit vectors pointing towards the source and the receiver, respec-

tively. In seismic exploration, most subsurface models are dominated by horizontal

structures. Thus, vertical wavenumbers in the model spectrum define the variations in

these horizontal structures along the vertical direction. Focusing on vertical wavenum-

bers, equation 3.2 leads to

δp(θ, ω) ∝ δv(Kz), (3.3)

Kz(θ, ω) = 2
ω

v
cos

θ

2
(3.4)

where Kz is the vertical wavenumber and θ is the opening angle between s and g, which

encodes the offset. Equation 3.3 effectively connects data collected at different frequen-

cies with the velocity model. It is evident, from equation 3.3, that if the angle θ between

the source and the receiver is fixed, every wavenumber in the model is then illuminated

by a unique frequency, which makes a trace-by-trace extrapolation impossible. Further-
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more, if the wavefield perturbation δp(θ1, ω1) is a known entity, we can construct the

model at the wavenumber Kz(θ1, ω1) and subsequently model any wavefield δp(θ2, ω2),

so that Kz(θ2, ω2) = Kz(θ1, ω1), according to equation 3.3. The extrapolation process

can thus be summarized as

δp(θ1, ω1)→ δv(Kz)→ δp(θ2, ω2). (3.5)

For direct extrapolation according to equation 3.5, a perturbed model δv would need

to fall within the limits of the validity regime of the Born approximation [114]. Other-

wise, the extrapolation would lead to an inaccurate wavefield at the target frequency.

Accuracy of the reconstructed perturbation δv depends on coverage of model wavenum-

ber spectrum and thus can be improved by including data for more frequencies ω and

offsets (implicitly introduced by scattering angle θ) to the left part of equation.

The lowest frequency that can be extrapolated without any assumptions about the

model spectrum can be derived from equation 3.4. This frequency is proportional to the

lowest wavenumber Klow illuminated by the available seismic data

ωlow = min
θ

Klow

2 cos θ2v
, (3.6)

where Klow is defined by the minimum frequency ωmin available in the dataset as well

as the opening angle θmax for the longest offset

Klow = 2
ωmin
v

cos(θmax/2). (3.7)

.

For zero-offset data, cos θ2 = 1, the estimate 3.6 reaches its mimimum and leads to the

limit of the lowest frequency that can be extrapolated

ωlow = ωmin cos(θmax/2). (3.8)

The equation 3.8 defines how far the frequency can be extrapolated without any

additional assumptions about the model. This limiting frequency is defined by the

minimum frequency ωmin available in the dataset as well as the opening angle θmax for
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the longest offset. For example, we can estimate the lowest frequency for extrapolation

at different locations in the subsurface model, based on equation 3.8, for a seismic

acquisition limited by an available minimum frequency of 2 Hz (Figure 3.1).
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Figure 3.1: Frequency estimation ωlowest for extrapolation based on wavenumber illumi-
nation theory, for a given minimum signal of 2 Hz available in the acquisition dataset
and a maximum source-receiver offset of 12 km. This model size setup will be used in
the subsequent benchmark study.

Typically subsurface velocities increase with depth, which provides larger illumina-

tion angles at depth from refractions and diving waves, and makes it possible to estimate

lower frequencies. Additionally, we assume that the geological model has layered, block-

like structures, and we build this a priori geological knowledge into the training set of

subsurface models. This allows to push further down the limits of the lowest frequency

that can be extrapolated.

Finally, limited applicability of the Born approximation leads us towards data-driven

approach with non-linear estimators such as deep neural networks. Artificial neural

network does not require explicit manipulations with the model perturbations and allow

to infer a non-linear relation from numerous pairs of high-frequency data and low-

frequency data. Unlike Born scattering, this relation is non-linear and does not rely on

particular background velocity model. Therefore, the domain of applicability is defined

only by the training data set and architecture of the network.

3.3 Deep learning framework

Neural network architectures date back as early as [120]. Since then, major advances,

supported by powerful computational hardware progresses, have been made, includ-

ing the recent progress in architectural representations, training capacities and data
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inferences in various scientific fields and engineering applications [121]. Artificial neu-

ral networks represent a mathematically simplified model of neurons connected in a

biological brain. The simple mathematical unit of a neuron is called a perceptron. It

mimics a neuron that accumulates charge and passes it to a non-linear thresholding

output function. Multiple perceptrons assembled into a layered structure shape a simple,

fully-connected artificial neural network where all neurons within a layer are connected

to each other. Each incoming connection to a neuron has a weight that defines the con-

tribution of this connection to the total output. Neural networks have become one of the

most powerful and appealing data analysis tools for non-linear adaptive data regression,

using multiple input and multiple output data [122].

In supervised learning, the neural network is given pairs of input and target data. The

training stage consists of a two-step optimization problem of tuning the variable weights

of all neurons. In a first step, input data are passed through all layers of the multi-layer

network before a misfit is computed between the results from its final output layer and

the desired target data. The formulation of misfit is optional, although in generic cases,

it is set to a Ln - norm. In a second step, the misfit is back-propagated through each

connection in the network, changing each weight according to the respective gradient

(for a more complete overview we refer to [123].

3.3.1 Convolutional Neural Network (CNN)

Based on our previous experience with feed-forward neural networks [73, 74], we see

that the major challenge for a fully-connected neural network architecture is the steep

growth of the number of trainable parameters, when increasing the size of input and

target data. This impedes scalability and leads to an impractical amount of data samples

needed for the training stage. A convolutional neural network efficiently addresses this

challenge by implementing a concept of local spatial connectivity, meaning that only data

within a receptive field are fully-connected. The size of a receptive field corresponds to

the spatial extent of a kernel, which always shares the same depth with the input volume,

but is usually smaller along width and height axes, as shown schematically in Figure 3.2.

The convolution of the input data with a kernel results in a feature map that maxi-

mizes locations where a pattern in the data matches the kernel.

Feature maps from convolutions with different kernels are stacked together to build
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Figure 3.2: Convolution of input volume with a kernel resulting in a feature map. Depth
of the kernel is always equal to the depth of the input volume, whereas its spatial extent
may differ.

an input volume for the next layer. This implies that the number of kernels used in each

convolutional layer is equal to the depth of the output volume from this layer. Kernels

are usually initiated randomly and are trained by back-propagation of misfits between

expected and predicted outputs from the network. After training, each kernel matches

a certain feature in the data, with more complex features learned at deeper layers of

the network [124]. For the purpose of low-frequency extrapolation, we discretize each

shot gather in the frequency domain, and treat it as a digital image for feature detection.

Adding several convolutional layers together will then allow to generalize these fea-

tures across all shot gathers and ultimately increase the robustness of the low-frequency

extrapolation with CNNs.

3.3.2 Input and target data

Marine seismic acquisition delivers a suitable framework for supervised ML applications.

Towed streamers carrying a fixed number of hydrophones naturally matches the limita-

tion imposed on the dataset shape for a neural network. The restriction is that all pairs

of training and testing data should share the same dimensions throughout the dataset.

Input and target data for the network designed in this study are high- and low-frequency

parts of the spectrum of a shot gather, respectively. For each shot, we extract the ob-

served high-frequency part from the frequency spectrum of seismic data recorded by a

linear array of hydrophones and treat it as the input, whereas a single low-frequency

representation of the shot gather is the target.
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In general, neural networks in supervised learning are trained on pairs of input and

target data. So far, most neural network setups are determined empirically, meaning

that a trial-and-error approach is then necessary to find an optimal network architecture

that will lead to the best inference result. In that sense, both training and validation

data are of primary importance, whereas a method to treat these data is optional. This

means that the same dataset might be processed by a number of different methods to

find the best option. Thus, it is crucial to have a representative initial dataset that will

constitute a solid basis to build a ML framework around it. Let us therefore explain

in more details how we generate synthetic data, based on physical approximations, to

determine a neural network able to generalize across different seismic acquisitions.

To investigate our deep learning approach to extrapolate low-frequencies, we gener-

ate a synthetic dataset that mimics a marine seismic acquisition. We solve the Helmholtz

wave equation to obtain a pressure wavefield for a single frequency. For each frequency

and source-receiver pair, we obtain a complex value describing the pressure field excited

by the source and recorded at the receiver location. Data from a set of receivers sharing

the same source are shaping a single-frequency shot-gather, which is a complex-valued

vector with as many elements as there are receivers (Figure 3.3).

Figure 3.3: Example of mono-frequency representation of a shot gather. This is a
complex-valued vector with as many elements as there are receivers in the acquisition.
The red star indicates the source position and blue dots represent receivers.

The entire set of observed mono-frequency data p(xs, xr) shapes a data matrix (Fig-

ure 3.4(a)). We assume an evenly-spaced acquisition, so the matrix is symmetric and

squared. When the seismic acquisition covers the entire target area, the data matrix is
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densely populated. On the other hand, in marine seismic acquisition, the maximum off-

set is limited by the length of the streamer, which results in missing off-diagonal elements

in the data matrix (Figure 3.4(b)).

(a) (b)

Figure 3.4: Real part of a mono-frequency data matrix (a) and its mapping onto fixed-
offset streamer acquisition layout (b).

A stack of mono-frequency data matrices for a set of consecutive single frequencies

shapes a data cube (Figure 3.5). Top and bottom surfaces of the cube are the data

matrices for the highest and the lowest frequency, respectively. A slice of the cube, normal

to the source axis, represents a shot gather with its spectrum content along the vertical.

To preserve continuity in the wavenumber domain, we sample the frequency spectrum as

a geometrical set, meaning that every following frequency is obtained from the previous

one as the product with a constant coefficient. A similar selection of frequencies is used

in the multi-scale approach [26], which is a common practice in frequency-domain FWI.

Exploring the data cube, one could notice continuous stripes extending within a

single shot gather, as shown in Figure 3.6. These features correspond to transmission

and reflection modes of the wavefield. Event tracking [66] essentially stretches data

at a short offset and a high frequency to the data at a long offset and a low frequency,

along the depicted lines. For a simple homogeneous velocity model, their shape could be

derived analytically from a wavenumber analysis, whereas, when the velocity model is

inhomogeneous, these features become distorted in a non-linear way. This makes their

extrapolation challenging.

3.4 Method

The standard workflow for a machine learning algorithm consists of only three stages:
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Figure 3.5: A data cube created from a stack of mono-frequency data matrices. Each
side slice of the cube is a shot gather, decomposed into a number of frequencies.
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Figure 3.6: Single shot gather in the frequency domain. Lines indicate the stationary
phase for transmitted waves. For reflections, the stationary phases are in the opposite
direction. The data regime of the convolutional neural network (CNN) connects high to
low frequencies.

• The data. The whole dataset is separated in two parts, one to serve for training

of the algorithm, and the other part to be used for validation and performance

evaluation. Data preprocessing is also an important step within the preparation

stage, as it helps to equalize the contribution of features in the training.

• Selection and training of the algorithm. The dataset is a constant which can be

manipulated in a variety of ways, so our goal is to identify an approach that delivers

the best performance result on the validation data.

• Inference. The algorithm infers about the unseen target data based on its training

experience.

For a streamer acquisition with R hydrophones, the input data has the shape of

F × R × 2. The last factor 2 is due to the real and imaginary parts of the wavefield in

the frequency domain, and F indicates the number of frequencies in the high-frequency

part in which the shot gather spectrum has been split. Similarly, the shape of the mono-

frequency target data is 1×R× 2. We discretize the known frequency range into F = R

frequencies to get a squared volume with two channels. Equal spatial dimensions in the

image assure equal contributions from both vertical and horizontal features within the

training stage of the CNN. Figure 3.7 shows a schematic representation of our input data

matrix and output data vector. Note that the desired target output is specific to a single
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low frequency predicted at R receivers, i.e., each single low-frequency extrapolation is

associated with an individual neural network.

Figure 3.7: Input data is a sampled high-frequency part of a shot gather spectrum,
whereas target data is a single low-frequency shot gather representation.

3.4.1 Random model generation

For all artificial neural network applications, the training stage is the most crucial step.

In supervised learning, multiple pairs of data are needed to train the network, where

massive datasets are often required for more complex data analysis applications. For our

purposes, many real-world seismic data acquisitions would be required to train a CNN

capable of generalizing subsurface features, which would become unfeasible. Instead,

we generate all synthetic data for training based on approximate physics, all synthetic

data for training and then use the trained CNN for inference on samples of true data

generated for benchmark models. All synthetic seismic datasets are modeled for marine

seismic acquisitions in randomly generated velocity models, and are used to train and

validate the neural network.

The generation of realistic velocity models itself is a challenging task and deserves

separate consideration [125, 126, 127]. Here, we only list empirical practices that out-

performed others in our particular framework. We find that approaches for random

model generation such as random Gaussian fields, layered models, and linear gradient

models with salt-body intrusions, do not succeed in building a representative set of veloc-

ity models that would lead to successful training. A principal component analysis of those

random velocity models shows that, often, only a few principal components dominate
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all others, which may be the result of improper parameter tuning or an implementation

bias. However, when building random models from interpolation in-between random 1D

velocity profiles (Figure 3.8), the total model variance is spread among a larger amount

of principal components, and thus results in a better network inference on validation

data.
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Figure 3.8: Random velocity model created by interpolation in-between random 1D
velocity profiles.

The number of points to sample a random 1D profile, as well as the number of

profiles needed to produce a velocity model with dominant lateral structures, is defined

by the minimum and maximum frequencies to be extrapolated. We compute the range of

expected wavelengths within the physical dimension of the velocity model, and then use

these wavelengths to limit the thicknesses of layers within a profile. Random profiles are

then stacked side-by-side and reshaped to match the size of the original velocity model

where the acquisition takes place.

We also introduced a linear background trend into all generated random subsurface

models such that it serves as a baseline to limit the lowest velocities in the generated

models. To that end, we conducted a rough grid search for trends that minimize the

misfit between observed and modeled data. Each newly generated random model is then

compared, in terms of Euclidean distance, with the set of all previously built models to

ensure a more even sampling of the model space.

Normalization of features within the dataset is crucial for successful training of any

deep learning model. Proper scaling of the data accelerates training and equalizes

contributions from each feature in the training stage. We split complex valued wavefield

into its real and imaginary parts and scale each of them individually to fit the range

[−1, 1]. Scaling coefficients are saved and then applied when needed to restore the data
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values to the original scale that is suitable for FWI applications.

3.4.2 CNN architecture

We design and train each CNN to serve as a non-linear extrapolator from high- to low-

frequency representation of a shot gather. Figure 3.9 shows our CNN architecture, which

consists mainly of four convolutional blocks with two fully-connected layers at the end.

Input and target data to the network are represented by a complex-valued matrix and

a vector, respectively (as shown in Figure 3.7). For the CNN, each convolutional block

includes two consecutive convolutional layers sharing the same set of hyperparameters.

Each block is followed by a batch-normalization and a max-pooling layer aimed at re-

ducing the dimensionality and equalizing contributions from each block to the learning

process. A stack of convolutional layers with small-sized kernels is more efficient in

capturing larger features in the dataset rather than an equivalent single layer with a

larger kernel size [128]. This means that a sequence of two consecutive convolutional

layers with a stride of 1 and receptive field of 3 × 3 is equivalent to a single layer with

a receptive field of 5 × 5, whereas fewer trainable parameters which are beneficial for

preventing overfitting. A set of convolutional blocks compresses input data into a latent

space which is then fully-connected by two dense layers to shape the target output.

Figure 3.9: Architecture of a convolutional neural network designed for low-frequency
extrapolation. There are four convolutional blocks followed by two fully-connected
layers.

In more details, there are 16, 32, 64 and 128 kernels used in each of convolutional

blocks. We pad each convolution with zeros and use exponential linear units [129] as an
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activation function for all convolutional layers. The output from the last convolutional

layer is flattened into a vector of 512 units, which is then passed to the fully-connected

part of the network composed of layers with 136 and 68 neurons, respectively. At the

latest stage, we reshaped the output from the last layer of the network to be 34 × 2,

which stands for one complex value for each of the 34 receivers in the streamer line. To

meet the range of normalized training data ([−1, 1]), we equip the first of two dense

layers with a hyperbolic tangent activation function that spans the same interval. The

last dense layer, which has a linear activation, serves as a summator for its inputs. Such

architecture leads to a total of 373,212 trainable parameters.

Finally, we train the network using Adam’s optimizer [130], with a batch size of 32

and a learning rate dropping down to 10−5. We initialize random weights following

[131], and use early stopping to prevent overfitting when training does not advance for

more than six iterations. For the numerical implementation of the CNN, we used Keras

[132] with a TensorFlow [133] backend.

3.5 Examples

In this section, we illustrate our low-frequency extrapolation approach for the central

and left parts of the BP 2004 [92] and SEAM Phase I [93] benchmark models. To

demonstrate its validity, we conduct a multi-scale acoustic FWI with the extrapolated

low frequencies and show results for the central part of BP 2004 velocity model.

The central segment of the BP 2004 model is 24 km long and 7 km deep. Surface ac-

quisition involves 68 collocated sources and receivers evenly placed with 320 m spacing.

Input and target data for the network are assembled from samples of equal size extracted

from the acquisition data matrix, according to the scheme shown in Figure 3.4(b) where

we limit the maximum offset in the data is limited to half of the model width (which

is 12 km). This mimics a standard streamer acquisition and allows us to process all

the shots in an efficient manner, using reciprocity to process all data that are not in-

ferred directly. All benchmark sections share the same acquisition geometry and model

dimensions, the only difference being in the distribution of acoustic parameters.
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3.5.1 Dataset

The synthetic dataset includes shot gathers from marine surveys generated for 400 ran-

dom subsurface velocity models. With 68 unique receiver locations, whereas the network

extrapolates mono-frequency data for only 34 of them at a time. Thus, to shape a squared

input volume for the network, we need to model 34 mono-frequencies for each shot

gather, within the known range from 2 Hz to 4.5 Hz and a single target low-frequency

for output.

Figures 3.10(a) and 3.10(b) compare the extrapolation accuracies of the network for

multiple models, different training set sizes and different misfit definitions, respectively.

From a total of 27,200 data pairs, 20% (5,440 samples) are used as a validation dataset,

whereas the rest of 21,760 samples serve as a training dataset. The extrapolation ac-

curacy is then measured as the total sum of all misfits between the target and inferred

outputs for the validation set. When compared with a training dataset of twice this size,

we find that the extrapolation accuracy of the network improves, although only slightly.

This may be due to a relatively homogeneous dataset among the generated random

velocity models, where more models only lead to little extra information.

Furthermore, we do not observe significant differences when solving the network

optimization for an L1 or L2 misfit function. In general, we find that very low frequencies

are better extrapolated. This is somewhat expected, as for longer wavelength signals,

the effects of complex subsurface features become less pronounced, thus easier to detect

for a general regression system.

3.5.2 Low-frequency extrapolation results

The ability to generalize data inference is one of the most beneficial features of artificial

neural networks [134]. Complex non-linear relations learned by the neural network

enable it to produce also reasonable results when applied to data it has never seen. We

check this generalization ability of our networks, trained each for a single low-frequency

extrapolation, by feeding them high-frequency data generated for several benchmark

velocity models. All benchmark models are mimicking a realistic geology of salt-induced

media, thus the same neural network should be able to infer the low-frequency signal

for each of them.
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Figure 3.10: Comparison of misfits between target and inferred data for the networks
trained on datasets built from 200 and 400 random velocity models (a), and optimization
for L1 and L2 loss functions (b).
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In the following, we compare real parts of true and extrapolated data matrices and

their differences for 0.25, 0.5 and 1 Hz. We also compare data for central and left parts

of the BP 2004 benchmark model, as well as for a section from the SEAM Phase I model.

Extrapolated data for each shot gather in the acquisition, at different frequencies, are

generated by individual CNNs. As previously shown in Figure 3.7, amplitudes of the

extrapolated low-frequency wavefield for a shot gather are produced from high-frequency

data within the known frequency range. The known frequency range is sampled by as

many individual frequencies as there are receivers.

BP 2004 central. The massive salt body in the middle of the BP 2004 benchmark

model is one of its distinctive features (Figure 3.11(a)). We extract this salt-containing

section to show the benefits from using the extrapolated low-frequency data in such

a complex geology. The main complexity comes from the presence of both flat and

oblique flanks of the salt body, which cause strong reflections and multi-scattering. In

particular, the strong reflections from the salt-sediment surface lower the signal energy

propagating through the salt body, which then causes tomographic imaging techniques

to fail. Additionally, the steep flanks cause multi-scattering, which becomes a challenge

for methods relying on the Born approximation. Finally, there is a low-velocity anomaly

below the salt, which may be a hydrocarbon collector. Targeting the inversion to this

collector, we first extrapolate low-frequency data and will show its use in a multi-scale

FWI.

As noted above, the maximum offset in the data is limited to half of the model width

(12 km). Due to this limited acquisition offset, the illumination in deep parts of the

model becomes poorer (Figure 3.11(b)). We can therefore expect that the neural net-

work training will mostly corroborate connections in the data, due to variations in the

upper part of the velocity model, where data coverage is the highest.

Extrapolated low-frequency data (Figure 3.11(c)) follows the major trends in the

true data. The mismatch between data matrices increases at higher frequencies, possibly

caused by more complex contributions of subsurface features into the total misfit. During

the training stage of the network, we search for the minimum of the L2 loss function

that is mostly sensitive to the largest deviations in the data. However, we find that
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Figure 3.11: Central section from the BP 2004 benchmark velocity model (a). Normal-
ized illumination in the model accounting for truncated half-offset acquisition. White
lines indicate ray paths of diving wave, green points indicate locations of collocated
sources and receivers (b). Real part of data matrices for extrapolated low-frequencies at
0.25, 0.5 and 1 Hz (c).
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optimizing for a more sensitive L1 misfit does not improve the overall extrapolation

results (Figure 3.10(b)). From other side, parametrization of the input data defines

features of the wavefield that contribute to the norm. In this study, we treat the complex

wavefield by explicitly feeding its real and imaginary parts to the network. A different

parametrization of the wavefield by its amplitude and phase didn’t lead to significantly

different extrapolation results, however there is still a room further exploration. For

this reason, in future studies, we plan to investigate both misfit functions that are more

sensitive to phase variations and other parametrizations of the data.

BP 2004 left. In the section from the left-side of the BP 2004 model, there is an

elongated salt body covering almost half of the section’s bottom part (Figure 3.12(a)).

Without low-frequency data, conventional FWI stagnates, retrieving only the top of the

salt and corrupting the rest of the image, due to a lack of illumination. This is another

case where low-frequencies would highly contribute to the success of full-waveform

inversions.

Distinctive features in the data matrix in Figure 3.12(b) are parallel stripes, shaped

by off-diagonal elements. These are built by strong reflections coming from the top of the

salt in which its surface is lying below water and a thin layer of sediments. Extrapolation

results show a mismatch in fine details at higher frequencies, whereas smooth data is

well-extrapolated at lower frequencies.

SEAM Phase I. Despite some similarities in the placement of the salt body, at the

center of the velocity model, data matrices from the SEAM Phase I (Figure 3.13(a)) and

the central section from the BP 2004 model (Figure 3.11(a)) look very different. The

shape of the salt surface, as well as the water depth, strongly affect the structure of data

matrices, due to reflections of different amplitudes arriving at receivers with different

phase shifts.

Extrapolated data for the section from the SEAM Phase I model (Figure 3.13(b))

show a fit at low frequencies that is worse than the fit for other test examples listed

above. The largest errors occur in parts of the data matrices where seismic sources are

placed right above the salt surface (centers of top and bottom edges of the data matrix).

A reason for this is the resizing (for testing purposes) of the original model, in order
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Figure 3.12: Left section from BP 2004 benchmark velocity model (a). Real part of data
matrices for extrapolated low-frequencies at 0.25, 0.5 and 1 Hz (b).
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Figure 3.13: A section from SEAM Phase I benchmark velocity model (a). Real part of
data matrices for extrapolated low-frequencies at 0.25, 0.5 and 1 Hz (c).
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to fit the same dimensions as those for the randomly generated data, which results in

a very shallow water layer above the salt. For low frequencies, such a small gap is less

than a quarter wavelength in the water, and thus becomes negligible, leading both the

modeling of the synthetic training data, as well as the extrapolation by the network, to

poor reconstruction results for those particular areas.

3.5.3 FWI application

To test the usefulness of the extrapolated low-frequency data, we follow a multi-scale

approach running an acoustic FWI [26] for the central part of the BP 2004 benchmark

velocity model (Figure 3.11(a)). We initiate the inversion at the lowest extrapolated

frequency, and use the inversion result at that frequency as an initial model for FWI at the

next higher frequency. The set of frequencies used in this strategy is that of a geometric

sequence. Assuming that observed data are available within the range from 2 Hz to

4.5 Hz, we extrapolate the missing data needed for this multi-scale approach, starting

from 0.25 Hz with a geometric multiplier of 1.3. The corresponding total sequence

consists of twelve frequencies, with eight extrapolated ones {0.25, 0.33, 0.42, 0.55, 0.72,

0.93, 1.21, 1.57} Hz, and four within the known range {2.05, 2.66, 3.46, 4.50} Hz.

The CNN learns to map a single low frequency from a set of high frequencies. There-

fore, to extrapolate eight target low frequencies used for the multi-scale approach, we

train eight neural networks sharing the same architecture and input training data set.

The only part that differs is the target data, different for each target low frequency. The

inversion is then sensitive both to phase and amplitude of the extrapolated data. How-

ever, since these values may not be entirely accurate, we compensate for inaccuracies

of poorly extrapolated data by adding an additional regularization term to the misfit

function. As shown in the Figure 3.10(b), the extrapolation errors increase for higher

frequencies, meaning that using poorly predicted data at later inversion stages will ham-

per inverted velocity models. Thus, to successfully run the inversion we use the first five

extrapolated low frequencies only, and fill the remaining gap by adding regularization

terms to the misfit function [135].

The largest velocity anomalies in the resulting subsurface model are placed in their

correct locations when inverting the lowest extrapolated frequency data of 0.25 Hz.

According to Figure 3.10(b), the best match of true and extrapolated data is reached



78

0.25Hz

0 5 10 15 20

km

0

2

4

6

k
m

2

3

4

5

k
m

/s

(a)

0.42284Hz

0 5 10 15 20

km

0

2

4

6

k
m

2

3

4

5

k
m

/s

(b)

2.0458Hz

0 5 10 15 20

km

0

2

4

6

k
m

2

3

4

5

k
m

/s

(c)

4.5Hz

0 5 10 15 20

km

0

2

4

6

k
m

2

3

4

5

k
m

/s

(d)

Figure 3.14: Multiscale full-waveform inversion of low-frequency data extrapolated by
CNN (a-b) and data from the known interval (c-d).
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for the lowest frequencies, which is confirmed in the image domain, when running

an inversion of the extrapolated data. The resulting image from FWI, at the highest

frequency of 4.5 Hz, recovers most features in the central part of the model. We also see

the target low-velocity arch, below the massive salt body. Examples of constrained FWI

applied to similar benchmark models are shown in [14, 110, 11].

To summarize, FWI applied to extrapolated low-frequency data converges to a rea-

sonable initial model, which then leads the inversion at higher frequencies to a more

robust final velocity model than that obtained without extrapolated frequencies. As a

result, we see the current neural network approach to low-frequency extrapolation as

being potentially interesting for FWI applications in complex subsalt models.

3.6 Application to noisy data

Seismic data are always corrupted by noise in real-world scenarios, thus we want to

examine the capability of the network to treat noisy data.

We train the network on synthetic data for two scenarios. First, we add an artificial

Gaussian noise, SNR=14, to the input part of the training dataset and subsequently test

the network on a dataset with SNR=7, for the central part of BP 2004 benchmark model

(Figure 3.11(a)). A reduced level of added noise, during training acts as a regularization

[136], which helps to prevent overfitting and to handle noise at the inference stage.

Second scenario demonstrates the case when the network uses a noise-free dataset for

training, whereas noisy data is given as input for inference.

Low-frequency data reconstructed from noisy data exhibit features similar to those

in true data for both scenarios (Figure 3.15). Noise in the high-frequency data affects

mostly the amplitude of the extrapolated low-frequency data, whereas the phase remains

close to the inference results from noise-free data. However, the network trained on

clean data did not succeed in extrapolating for the higher frequencies from noisy input

data.

3.7 Discussion

Deep neural networks are powerful data-driven mathematical models able to derive

relations directly from data. This allows accounting for realistic physics such as visco-
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elastic anisotropic effects, as no explicit modeling is involved at the inference stage. We

use an acoustic wave equation for modeling, which is most likely not realistic. A common

drawback is that there is no unambiguous approach to determine the architecture and

set of hyperparameters of the neural network. The architecture plays an important role,

but there are only empirical practices on how to design it. The structure of the CNNs

we implemented in this study was motivated by the need to compress input data into a

latent space, and then map it onto a space with the dimensions of the target data. It is

therefore an exploratory setup, where the current experience can only guide to future

improvements in such a machine learning framework. Transfer learning paradigm also

offers promising options to facilitate the search for a deep learning setup for frequency

extrapolation [137]. Under this approach, a deep learning model designed and trained

for one task might be applied for another conceptually similar task, however at lower

re-training cost.

Generation of synthetic training data can be prohibitively expensive when attempting

to train a network to extrapolate a complete low-frequency dataset from entire survey

data recorded for numerous seismic sources. In such scenario of survey-to-survey map-

ping, one random velocity initialization only delivers one training sample. However,

targeting to interpolate for a shot gather in a single pass, rather than for entire survey,

drastically reduces the time needed to generate a training dataset, while preserving a

promising extrapolation capability. For a single random subsurface model, we generate

as many training data pairs as there are sources. We benefit from this approach even

more when we run the wave propagation modeling in the frequency domain where

computational costs do not scale as fast as that in the time domain, when modeling for

multiple sources. Still, it remains unclear which particular features from the synthetic

dataset generated with approximate physics – purely acoustic in this study – can help in

training neural networks for them to be able to generalize data inference across different

subsalt acquisitions.

Time-domain data is natural for real-world seismic surveys. However, diversity in

duration and sampling rates of recorded traces lead to variable input dimensions of data

and make it challenging to directly use such time-domain data in ML applications, unless

these are designed to process time series data. Proper preprocessing and compression

of time-domain data seems to be the key point to address prior to developing an deep
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learning model. Otherwise, conversion of time-domain data to frequency domain also

leads us to the sufficient framework for frequency bandwidth extrapolation.

Although low-frequency extrapolation results are not entirely accurate, we were still

able to demonstrate that, if used within a multi-scale inversion strategy combined with

additional regularizations, they can help the FWI to correct large scale-length velocity

features in the initial model. The neural network approach demonstrated here has

the advantage of being a purely data-driven regression tool, able to generalize across

different seismic acquisitions. It therefore minimizes assumptions on data connectivity

or physics-related extrapolations. However, implicitly, we still include a priori geological

information in form of the dataset generated for the training stage. Future research

needs to evaluate how this sampling of the model space affects, and may improve the

network inference accuracy. That said, the current neural network extrapolation results

help to further enhance the robustness of FWI in complex subsurface regions.

With recent advances in the domain of multiparameter scattering in the wavenumber

domain the theory can easily be extended to elastic and anisotropic cases. Wave prop-

agation on HPC architectures, in frequency and time domains, paves the way for the

extension of the numerical part of the studies. In future studies, we also plan to apply

the method to real data.

3.8 Conclusions

We explain the feasibility limits of the frequency bandwidth extrapolation from a wavenum-

ber illumination perspective. Through wavenumber analysis, we show that high-frequency

data recorded at long offsets are linked, through the subsurface velocity distribution, to

low-frequency data at short offsets. Therefore, bandwidth extensions of individual traces

are not viable without strong constraints on the model. However, extensions of full data

sets are possible, assuming that the inverse problem is, in principle, resolvable with the

available data.

We propose the framework for multi-offset low-frequency data extrapolation. Treat-

ing the entire acquisition as a collection of independent shot gathers is beneficial for

several reasons. First, shot-wise low-frequency data extrapolation makes the proposed

neural network-based technique applicable without retraining to a range of exploration
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setups with fixed-offset geometry such as in marine streamer acquisition. Second, the

generation of the synthetic training dataset in the frequency domain drastically reduces

computational costs as we are able, from a single velocity model, to produce as many

training data pairs as there are sources.

We designed a deep convolutional neural network to generate a low-frequency repre-

sentation of a shot gather, given its high-frequency part, and trained it on data generated

from random velocity models. Inputs and outputs from the network are multiple high-

frequency and single low-frequency representations of a shot gather, respectively. We

subsequently apply the trained network to extrapolate the spectrum, for several bench-

mark data sets. Extrapolation excels at capturing general trends in the data, which is

enough for extrapolating very low frequencies. On the other hand, fine features at higher

frequencies are missing. Finally, we run an acoustic FWI for a benchmark model, using

the extrapolated low-frequency data. The synthetic inversion tests show that the artificial

data of low frequencies are accurate enough to correct most of the large scale-length

error in the initial model, and help FWI to converge.
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Chapter 4

Multi-task learning for low-frequency extrapolation and elastic

model building from seismic data

Time domain is natural for seismic data. However, the wide range of amplitude variations

within the desired low-frequency range in time domain causes challenges for data-driven

methods. In particular, amplitudes of long-wavelength signals in the lower part of a

selected frequency range might be negligible compared to those from the later part of

the same range. Thus, the key problem for low-frequency extrapolation in time domain

is to focus the training of a deep learning model on weak long-wavelength signals while

keeping higher frequencies also accurately reconstructed. Rather than aiming to reach

superior accuracy in bandwidth extrapolation, this chapter proposes to jointly reconstruct

low-frequency data and a smooth background subsurface model within a multi-task deep

learning framework. We automatically balance data, model and trace-wise correlation

loss terms in the objective functional and show that this approach improves the extrap-

olation capability of the network. We also design a pipeline for generating synthetic

data suitable for field data applications. Finally, we apply the same trained network to

synthetic and real marine streamer datasets and run an elastic full-waveform inversion

from the extrapolated dataset, highlighting the potential of this novel approach.

Results presented in this chapter are adaptation of the paper submitted to IEEE Transac-

tions on Geoscience and Remote Sensing.

Ovcharenko, Oleg, Vladimir Kazei, Tariq Alkhalifah and Daniel Peter. "Multi-task learn-

ing for low-frequency extrapolation and elastic model building from seismic data" Under-

going review in IEEE Transactions on Geoscience and Remote Sensing, 2021.
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4.1 Introduction

Seismic waveforms recorded at the surface are the primary source of information about

the Earth’s interior [138]. If the subsurface elastic properties are known, then seismic

waveforms can be simulated and compared to the ones recorded in a field experiment.

Full-waveform inversion (FWI) is a technique that optimizes hypothetical subsurface

properties such that every wiggle in the recorded seismic data matches the data simulated

using these subsurface properties [90]. Due to its versatility and ability to handle any

realistic data, FWI is dominating seismic imaging in the past decade in both seismological

[139] and exploration communities [140, e.g.]. FWI optimizes the model of the Earth

so that it explains the data using local search for optimal parameters. For such a non-

linear optimization problem the two key requirements for success are the right data

to optimize towards and the right starting point or initial model [95]. When none of

these is available the inversion suffers from cycle-skipping phenomena when wiggles

of synthetic data are matched with their wrong counterpart from observed data [141].

This is the case in reality when all that is typically available is band-limited seismic data

contaminated by noise. Therefore there are two tasks that need to be completed to set

up FWI:

1. Estimation of a realistic initial model and source wavelet

2. Conditioning the data or re-defining features that should fit between simulated

and recorded data

While these tasks are separate, they are tangled with each other. Namely, the solution

for the first task leads to requirements for the second one. For example, if the initial

model for inversion is very close to the actual subsurface, then conventional FWI would

work without low frequencies. On the other hand, if the initial model has a major

seismic shadow in a wrong place (for example if a salt body is mispositioned), then there

is almost no way that available band-limited data can correct the non-illuminated areas

of the model as there is no sensitivity from the synthetic model.

The vast majority of FWI formulations assume the availability of a decent approxi-

mation of velocity trend (e.g. extracted from regional logs) and focus on FWI and/or

data improvements. The data misfit for FWI might be constructed to compensate for the
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missing low-wavenumber information [8, 142, 143, 144, 145]. Alternatively, constraints

applied alongside the main objective might serve the same goal [12, 146, 147, 148, 11].

Conditioning and smoothing of gradients for model updates also help inversion to toler-

ate inaccurate initial starting model for inversion [149, 110, 18, 148].

Classic approaches brought the dawn of FWI in seismic exploration, however, they

either require a different inversion engine to be used (e.g. advanced traveltime tomog-

raphy) or require more iterations of high-frequency seismic simulations. With multi-task

learning, we aim at correcting the data and estimating the initial model so that elastic

FWI works.

4.1.1 Low-frequency seismic data

In a perfect world, where a broadband signal illuminates the target domain from wide

angles, FWI would converge to a high-fidelity reconstruction of the medium. In reality,

only offset- and band-limited data recorded at the Earth’s surface is available for inver-

sion. Altogether, this makes FWI a highly nonlinear optimization procedure suffering

from the non-uniqueness of the solution. Numerically, this corresponds to the presence of

multiple local minima of the objective function [150] where the optimization algorithm

might get stuck on its way down to the optimal solution resting in the global minimum.

Recall, that the background velocity model derived from tomography compensates

for frequencies below 1 Hz [55]. While the frequency content recorded in a generic

marine airgun survey drops below noise level at about 4 Hz [56]. The frequencies falling

in-between these estimates correspond to the gap in the model wavenumber spectrum

[57]. Reconstruction of these low frequencies is the objective of this study.

4.1.2 Reconstruction of missing low-frequency data

Data-driven reconstruction of missing low-frequency energy might be approached in

time and frequency domains. A time-domain seismic signal is a composition of multiple

independent mono-frequencies. Thus, bandwidth extrapolation in the time domain aims

to simultaneously recover a range of such frequencies. The headwind of working in the

time domain is that amplitudes of the signal at the lower end of the target frequency
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range are significantly weaker than those at the higher end. While amplitude balancing

techniques such as automatic gain control (AGC) or spectral whitening might help in

addressing the issue, these methods are sensitive to noise yet their applicability is still to

be explored. Unlike the time domain, frequency domain representation of seismic data

offers a discretized framework where every frequency component might be considered

in its own context. Dimension of each mono-frequency data is less by one, compared

to multi-frequency time domain data, thus allowing to train a weak dedicated network

for each individual frequency [151, 69]. However, the application of such methods to

time-domain data might be impractical since bandwidth extrapolation of each frequency

would require training of its own small network.

Time-domain representation of seismic data is natural both in acquisition and pro-

cessing. In particular, the majority of deep learning methods for bandwidth extension

are focusing on the time/offset format of the data. [76, 152] proposed and then de-

veloped a trace-by-trace approach for frequency extrapolation in the time domain. The

method operates on full-duration time series and is powered by WaveNet architecture.

The approach is suitable for elastic waveform inversion in marine survey layout. [153]

and [154] extrapolated low frequencies by training convolutional networks on AGC-

balanced patches of time-domain seismic data in marine and land setups, respectively.

[79] avoided using synthetic data and trained the UNet to translate knowledge of low-

frequency data from OBN survey to band-limited shallow streamer data. [155] proposed

to iteratively halve the central frequency of a gather by a recursive convolutional net-

work. Since synthetic data does not accurately represent the field data, [156] developed

the self-supervised learning pipeline where predicted low-frequency data is iteratively

injected into FWI engine. The approach was further developed in [157]. [158] also

trained a network in a self-supervised fashion to retrieve similarity in transition between

high and low-frequency bands.

4.1.3 Reconstruction of the low-wavenumber initial model

A low-wavenumber model available for the target subsurface might compensate for

missing low-frequency content in seismic data. A general requirement is that such a

model should be sufficient to avoid cycle-skipping phenomena at the lowest frequency

present in the data. Deep learning offers opportunities to estimate realistic initial models
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for FWI directly from the data. Most commonly, the objective for training is formulated

as finding a non-linear mapping between a complete set of seismic data from a synthetic

experiment and respective subsurface model. Meaning that the whole low-wavenumber

model of the subsurface is predicted from seismic data representing the entire seismic

survey [80, 81, 83, 86, 84, 85, 50]. In a synthetic setup, a subsurface model predicted

in such a way might have a resolution similar to FWI since the training and application

domain are close to each other. These methods are often tailored for specific survey

geometry and should be re-trained when experimental setup changes. Assuming that

the data from the limited aperture is sufficient to illuminate the local subsurface, [88]

proposed to map a set of neighboring common-midpoint-gathers into the central vertical

elastic profile. This approach manipulates shot-gather data rather than full-survey data

that improves its applicability to a broader range of domains. This way, authors apply

the same trained network to synthetic and field data with the requirement of having

an identical configuration of input seismic data. Motivated by the broad application

domain of limited-aperture problem formulation, we select a common-shot-gather as the

minimal source of input data for a deep learning model and explore limitations of such

formulation.

We attempt to jointly address tasks of time-domain low-frequency data extrapolation

and building a tomographic model of the subsurface. Specifically, we design a deep neu-

ral network architecture and formulate a multi-task learning objective to simultaneously

deliver two outputs.

The key contributions of this work include:

1. Method for generation of a synthetic dataset based on real-world marine data.

2. An architecture of a neural network for joint prediction of low-frequency data for

a common-shot gather and smooth initial velocity model under it.

3. Multi-task training objective for joint data and model prediction.

4. Case study for the application of elastic FWI with ML inputs

The paper is organized as follows. First, we introduce the multi-task objective for joint

low-frequency extrapolation and building a smooth background model. Then we explain



89

the generation of synthetic datasets tailored for specific real-world marine streamer data.

Finally, we showcase the application of the trained network on the synthetic Marmousi

II model and real-world marine streamer data and run elastic FWI in these models.

4.2 Multi-task learning framework

Multi-task learning (MTL) is inspired by the human ability to indirectly deduct knowl-

edge from related tasks [159]. For example, extracting the summary of a book can help

identify the genre. From the deep learning point of view, MTL is equivalent to training

a network to simultaneously perform several tasks while partially or completely sharing

trainable weights in the neural network branches leading to each of these tasks. With

hard parameter sharing, the MTL formulation forces the optimization to accommodate

the common knowledge for the main and auxiliary tasks in the shared weights of the

network. This potentially improves the generalization capability of the network on the

main task by constraining the domain of suitable solutions [5]. Thus, MTL generally

solves a multi-objective optimization problem, which requires the definition of a com-

bined objective functional that is typically a weighted sum of functionals related to each

task.

4.2.1 MTL loss design

Our objective is to jointly recover the low-frequency information for the entire common-

shot gather (CSG) and to reconstruct the low-fidelity subsurface model covered by the

streamer at the moment of shot excitation. We further denote it as a local subsurface

model for each shot. Two widespread choices for the FWI misfit are the point-wise

accumulated norms, and trace-wise correlation coefficients (a.k.a. L2 comparison of the

normalized traces). Therefore, we measure the low-frequency seismic data fit by the sum

of the point-wise L1 norm of the data difference (Ld) and correlation coefficient of the

predicted and labelled traces (Lc). The predicted low-wavenumber velocity model serves

as a starting FWI model. The quality of the prediction is constrained by the model loss

measuring the closeness of the reconstructed subsurface to the ground truth synthetic

model (Lm). Successful completion of this task can compensate for the incomplete

reconstruction of ultra-low frequencies. Furthermore, the completion of these two tasks
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delivers both a starting point and extrapolated data for FWI.

The complete objective function for our MTL implementation is as following:

L = W(Ld, σd) + W(Lc, σc) + W(Lm, σm) + Lreg (4.1)

where Ld is the difference-based data loss, which treats each pixel in the data inde-

pendently. The second term, Lc, also operates in the data domain but it promotes

scale-independent trace-wise correlation. The last term, Lm, is responsible for fitting the

local subsurface model. W is the weighting operator with trainable parameter σi that

dynamically balances training in between tasks, described below. Moreover, we add a

total-variation regularization Lreg into training to promote both sparsity in the predicted

model, as typically done in FWI [14, 11, e.g.], and ultra-low frequency components in

seismic data, as in compressive sensing [160, e.g.]. Let us explain each component of

the multi-task loss in more detail.

Weighting the tasks

Following [161], we define the weighing operator for a regression loss Li as

W(Li, σi) =
1

2σi
Li + log σi, (4.2)

with a task-uncertainty related parameter σi, i.e., for the data, σd, model, σm, and trace-

wise correlation, σc. The value of σi quantifies the error/uncertainty associated with the

prediction for the task i. When the uncertainty σi increases, the weight for the respective

loss term Li decreases. This effectively reduces the contribution of the gradient with

respect to Li into the minimization of the multi-objective functional. By this, contribu-

tions of multiple loss terms can be adjusted on-the-fly to enable an uncertainty-driven

automatic loss balancing. In practice, each σi is a scalar that is trained alongside the

network weights.

4.2.2 Difference-based data loss

The first objective of the training is to predict time-offset low-frequency data. In par-

ticular, we aim to reconstruct the wavefield recorded for frequencies below 5 Hz given
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input seismic data filtered above 4 Hz (Figure 4.2). The intentional overlap of corner

frequencies of band-pass filters eliminates the gap between known and unknown bands

caused by filter design.

We use a mean-absolute-error (MAE) loss for element-wise comparison of predicted

and target volumes of seismic data. Hereafter, we refer to a general pair of target and

predicted data as x and y, respectively

Ld = |d− d̂|1, MAE(x, y) =

∑N
i=1 |xi − yi|

N
, (4.3)

where d is the true data and d̂ is predicted data by the deep neural network. The network

is trained to reconstruct the CSG data and deliver a high correlation of individual traces

in the CSG. Unfortunately, far-offset traces typically have lower amplitudes and thus

smaller contributions, which challenges their predictions. Still, far-offset traces carry

diving waves with important information for low-frequency FWI [116] and thus need

to be reconstructed more carefully. To address this issue, we add in the following a

correlation loss term.

4.2.3 Correlation loss

The MAE loss treats seismic data as a collection of independent data points, linearly

attributing more weight to larger amplitude mismatch. To reduce the amplitude domi-

nance of short offsets over far offsets where the signal is generally weaker, we add an

auxiliary loss term that measures the trace-wise correlation of the signal along the time

axis.

Pearson coefficients quantify the linear relationship between two variables, ignoring

bias and scale. For seismic data with a zero mean, the Pearson coefficient is equivalent to

a cosine similarity measure. Cosine similarity is a commonly used scale-independent met-

ric, popular in the computer vision community. Effectively, it normalizes a pair of traces

by their norms and finds angles as if traces were vectors in a multi-dimensional space.

Since the zero-mean assumption might not be met when multiple arrivals are recorded

by the same receiver, we use the Pearson coefficient, as a more general formulation of
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cosine similarity, defined by

ρ =
cov(x, y)

sxsy
, cov(x, y) =

∑N
t=0(xt − µx)(yt − µy)

N
, (4.4)

where cov(x, y) stands for the covariance between two traces, with µα and sα denoting

the mean and standard deviation for a given trace, respectively,

sα =

√∑N
t=0(αt − µi)2

N
, µα =

∑N
t=0 αi
N

. (4.5)

The summation over t means counting over N temporal samples in a trace, α stands for

either x or y.

When applied for each trace in a CSG, ρ becomes a vector of coefficients ranging

from -1 to 1, between a perfect phase mismatch and match, respectively. The correlation

loss between ground truth, d, and predicted seismic data, d̂, might be formulated in a

straightforward way

Lc = 1−
∑K

k=0 ρ(dk, d̂k)

K
, (4.6)

where the subscript k denotes an individual trace from K traces in a CSG. The range of

Lc is from 0 to 2, for perfect match and mismatch, respectively.

4.2.4 Model loss

Without additional amplitude balancing the quality of extrapolated ultra-low-frequency

seismic data is insufficient for FWI to converge from a 1-D initial model. In particular,

reflections at frequencies < 2 Hz are poorly resolved. The lack of such low frequencies

might be generally compensated by the availability of low-wavenumbers in the initial

model, reducing the effect of the unresolved low-frequency content.

A single CSG contains sufficient data to recover a layered structure of the subsurface

in the vicinity of the shot location. Based on that, we formulate the subsurface fitting

term similar to the data matching term by

Lm = |m− m̂|1. (4.7)
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It seeks to optimize the MAE loss by recovering the sparse smooth background model

of the underlying subsurface, which intends to replace the presence of tomographic

frequencies. Since a subsurface model for an individual shot gather can not be accurately

recovered, we linearly average overlapping areas from all shots to build an initial model

for FWI. The resulting smooth background model then has a resolution approximately

equivalent to traveltime tomography, compensating for the missing ultra-low frequencies

in predicted data.

Finally, we add as regularization a total-variation loss term that promotes smoothness

in the predicted subsurface model as well as the ultra-low frequency component of

seismic data,

Lreg = LTV = |m̂|TV + |d̂u|TV . (4.8)

4.2.5 Architecture

We design a fully-convolutional architecture for joint prediction of the local subsurface

model together with two cascaded bands of seismic data (Figure 4.1). The network

consists of an encoder as well as data and model decoders. As an encoder, E, we use

a modified multi-column structure by [162]. In particular, we keep the three branches

that accommodate dilated convolutional layers with kernel sizes of 3, 5, and 7 and

create a bottleneck by dropping all upsampling layers. The outputs from each branch are

concatenated along the channel dimension and passed through another convolutional

layer to shape the final encoded representation of the input data. We find that such a

multi-scale decomposition of the input data is crucial to capture the weak-amplitude and

long-wavelength trends in the input volume. The benefit is primarily due to the large

perceptive field of dilated convolutional kernels.

There are two decoders, a data decoder and a model decoder. The data decoder

is a stack of transposed convolutional layers spatially upscaling the encoder bottleneck

into the dimensions of seismic data. The model decoder has a purely convolutional

structure that preserves spatial dimensions of the encoder output and maps it into the

single-channel model of the subsurface. Such a design decision of the model decoder

promotes sparse subsurface velocities and reduces the number of trainable parameters.
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Figure 4.1: Multi-task network architecture (left) and inference workflow for extrapo-
lated FWI (right). The input high-frequency data, HF, maps into low-frequency data, LF,
as well as a sparse local subsurface velocity model. The blending block then substitutes
extrapolated frequencies below 4 Hz into available seismic data. Local subsurface models
are stacked into the initial subsurface model for inversion.

4.2.6 Implementation details

Similar to full-waveform inversion, the training step of a deep neural network is a non-

linear optimization problem that is sensitive to the initial weights in layers of the network

as well as to the set of hyper-parameters selected for training. Here we list the practical

aspects that we found significant to this deep learning application.

Ensemble learning

Artificial neural networks are high-variance approximators prone to overfitting data

[163]. Also, the nature of non-linear stochastic optimization makes training sensitive to

the initial random state of network weights. As a result, the mapping between inputs and

outputs learned by a deep neural network depends on weight initialization. Averaging

predictions produced by having the same architecture, but differently initialized models,

helps to reduce this bias from the initial set of weights. Consistent features are shared by

all ensemble members, while initial weight-related errors in predictions from different

models cancel out [164]. We average predictions from 10 identical networks initial-

ized by different random seeds and notice that the cumulative prediction consistently

outperforms individual predictions of the ensemble members.

Batch size

Larger batch sizes typically lead to a better load of computational units and reduce

the generalization power of the network [123]. [165] analytically showed that large-
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batch implementations are prone to converging to so-called sharp local minima of the

objective function, while small-batch implementations converge to smooth local minima.

The sharp minimum implies the impossibility of an optimization method to escape the

attraction basin. We performed tuning of the batch size and empirically found that a

batch size of 4 delivers the lowest MTL loss on the testing dataset, and hence it is the

most suitable for the proposed architecture and dataset size.

Weight initialization

Before training a convolutional neural network, its weights are typically set to small

random values. However, the initialization method depends on the type of activation

function used in the layer. Since we use the Leaky ReLU activation in all convolutional

layers of our network, we follow the initialization method proposed by [166], also

known as the Kaiming initialization. A proper range of initial weights prevents gradient

vanishing problems as well as the problem of exploding gradients.

Learning rate

A properly selected learning rate policy improves the convergence rate and leads the

iterative non-linear optimization to a deeper minimum of the objective function. The

concept of super-convergence introduced by [167] suggests using the one-cycle strategy,

which changes the learning rate for every batch, gradually increasing it from the initial

warm-up pace to a large maximum rate, and then decreases it back to an ever lower

value than the initial rate. The authors show that the large learning rate serves as an

auxiliary regularizer when approached following the one-cycle strategy. We too observe

in our experiments that the training reaches a deeper minimum of the objective function

when using the one-cycle policy, rather than the reduce-on-the-plateau strategy that

quickly overfits our data.

4.3 Seismic data

In a supervised learning framework, it is critical to minimize the domain gap between

training and application datasets. For this reason, we copy acquisition design, noise
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imprint, and the source signature from a particular seismic dataset when generating our

synthetic training data.

4.3.1 Marine streamer data

The target 2D marine streamer dataset was acquired in the North-Western part of the

Australian continental shelf. Figure 4.2 shows a common-shot gather from the dataset

and its average power spectrum. There are 1,824 CSGs in the survey, excited successively

along a line with approximately 18.75 m spacing. The waveforms were then recorded

by 648 hydrophones placed along the towed streamer every 12.5 m. We use the signal

recorded for 6.2 seconds with 2 ms temporal sampling. The survey included the Broadseis

acquisition system with a variable depth streamer [63], capturing a robust seismic signal

above 2.5 Hz. Assuming that data below 4 Hz are unavailable, we use the frequency

band [2.5, 4] Hz as a real-world reference to evaluate the bandwidth extrapolation

results.

The source wavelet for each source location is estimated in the frequency domain

following [168]. For the sake of simplicity, we assume the average wavelet signature to

be shared among all sources. The general experimental layout for the marine streamer

data experiment is following the description in [169].

4.3.2 Generation of synthetic data for a specific marine dataset

The workflow for synthetic data generation utilizes the survey geometry, the seafloor

bathymetry, and the average source wavelet derived from the target field data. The

general knowledge about this deep-water area of seismic exploration defines dimensions

and elastic parameter distributions for a set of random subsurface velocity models. Mean-

while, the source signature and source-receiver configuration determine the layout for

elastic wave propagation in each random subsurface model.

Random subsurface models

The generation of realistic subsurface models remains a non-trivial task. In detail, the

properties of random models in Earth sciences were explored in [125]. [126] generated

realistic seismic models using shuffling of coefficients in a wavelet-packet domain and
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Figure 4.2: Marine streamer data (a) with its power spectrum (b). The dashed box
outlines the pre-arrival area that serves as a donor of noise. Butterworth bandpass
filters (d) are used to split seismic data into high-frequency (HF) and low-frequency (LF)
partitions (c). The ultra-low frequency range (UF) where field data was not captured.
Zero amplitudes are set in the input data for frequencies below the dashed line at 4 Hz.
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separate trend randomization. [127] showed that a style-transfer approach is capable

of transferring the layered structure from a geological reference to a smooth velocity

background, but at high computational costs. [170] trained a generative adversarial

network to accelerate style transfer between real-world images and geological models.

[171] formulated a pipeline for building 3D synthetic models with salt intrusions. Alter-

natively, [88] demonstrated that an elastic transformation applied to a simple layered

model might be sufficient for generating a diverse dataset of seismic waveforms. We

follow and modify this approach by creating random models that approximately follow

a user-defined background trend.

Figure 4.3: A sample random velocity model (a), the mean (b) and standard deviation
(c) for a dataset of 1,024 synthetic subsurface model realizations. The stack of central
well-logs (d) for the dataset of random subsurface models and the histogram of velocity
perturbations (e) at the depth marked by the white dashed line.

The workflow for the generation of realistic subsurface models includes 4 steps: (i)

we generate a sparse sequence of random values ranging from -1 to 1 to emulate the

distribution of impedance in depth; (ii) we build a dimensionless velocity profile v(z)

by integrating and fitting the result into the range from 0 to 1; (iii) we replicate the

v(z) profile to make a laterally-homogeneous layered model v(x, z); and (iv) we finally

apply the elastic transform to distort the layered model and randomly re-scale the model

velocities within 1.5 to 4 km/s.

Quantitatively, the amount of distortion is controlled by the mean and variance of

2D random Gaussian fields. Alternating those, one might produce models ranging from
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slightly variable layered models to salt-containing initializations. To ensure that the

produced model is following a selected background trend, v0(x, z), we first remove

the original trend from the generated model. Effectively, this creates a perturbation

distribution δv(x, z), centered around zero. Then, we add the randomized trend into

the perturbation map, v0(x, z) + δv(x, z) (Figure 4.3). The background trend models

also feature the fluctuating depth of the sea bottom. This makes the deep learning

model trained on such a dataset applicable to marine datasets with variable water depth.

The set of generated models then follows the specified trend while evenly spanning the

domain in terms of feature variability.

This procedure generates random samples of compressional wave velocities, Vp . We

then scale shear-wave velocity Vs and density ρ by empirical relations derived in [172],

ρ = 310 ∗ V 0.25
p , Vs = Vp/

√
3. (4.9)

Forward modeling in elastic media

The choice between an acoustic and elastic formulation of wave propagation defines the

fidelity of the phenomena as well as the computational costs involved in the generation of

the training dataset. [173] showed that for a large-offset marine data there is significant

energy attributed to wave mode conversion, regardless of the water-bottom type. The

discrepancies between acoustic and elastic modeling increase with offset and get more

prominent in media exhibiting severe scattering [174, 175]. We thus employ the elastic

formulation of wave propagation in both training dataset generation and FWI of marine

data.

To generate synthetic seismograms for our set of random subsurface models, we

use the elastic finite-difference implementation in time domain by [176] and [177].

The source wavelet extracted from the observed seismic data is the key component to

enable the generation of training data and subsequent FWI. Unlike land data, the marine

streamer data features sufficient wave propagation in the water layer, which makes it

possible to estimate the source signature reliably [113]. In particular, we use the average

source signature from all shots in the survey for forward modeling in random models.
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Realistic seismic noise from field data

The lack of realistic noise in the training dataset is another contributor to the domain

gap between synthetic and field data. The amplitude spectrum of seismic noise varies

at different frequencies whereas common random Gaussian noise is prone to affect only

high-frequencies when applied directly in the data domain [178]. To mimic realistic

noise, we extract the noise imprint directly from the field data, which turned out to be a

simple and efficient way to focus training on removing a particular noise pattern from

predicted data. Instead of training the network to cope with diverse random synthetic

noise, we train the network to remove the real-world noise specific to the target dataset.

An example of such a donor-area of representative noise is shown in Figure 4.2. We

collect such triangular noise patches from all field shot gathers intended for use in FWI.

Then, we tile and replicate these triangles into rectangles large enough to cover twice

the entire target shot gather in the training dataset. The double coverage of data shape

by noise allows augmenting the dataset on-the-fly during training by shifting the noise

pattern and reversing its polarity. The limited amount of field noise samples extracted

from target data makes the network accurately remove the data-specific noise at the

inference stage.

Pre-processing

After adding realistic noise, we split the generated synthetic data into inputs and targets

for training. We apply a set of 8th-order Butterworth band-pass filters, as shown in

Figure 4.2. Before that, we normalize raw seismic data by dividing it by the maximum

of its absolute value.

The input high-frequency data (HF) is made from full-band synthetic data by high-

pass filtering with a corner frequency of 4 Hz. Moreover, we explicitly set zeros in the

frequency domain for all data below 4 Hz to avoid signal leakage into the target. The

low-frequency (LF ) target data are built by applying a low-pass filter with a corner

frequency of 5 Hz. We evaluate the accuracy of extrapolated data on the ultra-low

frequency sub-band (UF ) of target data, constructed by low-pass filtering below 3 Hz.

The overlap between corner frequencies of the target LF and the input HF range

roughly accounts for the shape of band-pass filters and ensures the lossless pass of the
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target data below 4 Hz. Finally, we map LF into the [-1, 1] range, making it suitable for a

deep learning application. This way the amplitude information about targets is lost and

we use the amplitude of data in the available range from 4 to 5 Hz to reconstruct the

scale of predicted data prior to the FWI application. The local velocity model underlying

the shot location is another target for training. These model targets are scaled into the

range [-1, 1] using velocity box conditions and the linear transform mentioned earlier.

4.4 Numerical experiments

To reduce the gap between applications to synthetic and real data, we conduct both

a synthetic and field experiment, using the same survey design and source signature

extracted from the real-world marine streamer data. First, we detail the dimensions of

input and target data as well as specific hyper-parameters of the training runtime. Then,

we show extrapolation results and apply FWI to synthetic and field data.

4.4.1 Network training

The density of the marine survey described earlier offers redundant information for the

extrapolation of data below 4 Hz. We reduce the dimensionality of the data by sampling

receivers in the streamer with 25 m offset as well as increasing the time sampling rate

of seismograms from 2 ms to 16 ms. This way, each high-frequency CSG (input data)

measures 324×376 data points along offset and time dimensions, respectively. The target

low-frequency data shares the same dimensions while the target subsurface model is 4

times more sparse and measures 81 × 94 model points with 100 m spacing along the

offset dimension (Figure 4.4). For the training dataset, we generated 3,072 synthetic

shot gathers by modeling 3 shots in each of the 1,024 initializations of random velocity

models. The final dataset was further split into training, validation, and testing partitions

of 2,765, 154, and 153 samples, respectively.

To compensate for the ambiguity caused by random weight initialization [164], we

spawn an ensemble of 10 identical networks initialized from different random seeds and

average their predictions. The training strategy for each network includes 81 epochs

with batch size 4, guided by an Adam optimizer [130] with variable learning rates. In

particular, we utilize the one-cycle learning rate schedule by [167] with learning rate
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Figure 4.4: Sample input and target data used for training. High-frequency input data
(HF), low-frequency target for training (LF) and local subsurface model (MOD, upscaled
4 times for visualization) for a synthetic shot gather. The ultra-low frequency data (UF)
was used for the evaluation of bandwidth extrapolation.

bounds of 10−5 and 10−3 (Figure 4.5).

Figure 4.5: Training and validation loss curves (left), weights of respective losses (center)
and learning rate schedule (right). A larger weight for a certain loss term indicates higher
confidence associated with the task (lower uncertainty).

4.4.2 Marmousi II benchmark model

The Marmousi II model [179] is a standard benchmark for inversion and imaging algo-

rithms. We modify the model to match the field survey setup by cropping its dimensions

and rescaling its range (Figure 4.11). In particular, we reduce the maximum velocity

in the model to 4 km/s in order to meet the model bounds introduced earlier for the

generation of the synthetic dataset. The computational domain is discretized onto a

regular mesh with 25 m spacing, measuring 152×600 model points. This is equivalent to

the velocity model of 3.8×15 km along with depth and offset axes, respectively. We place

128 sources every 200 m along the offset dimension, from 1.125 km to 13.825 km. The

marine streamer is about 8 km long and the first offset used in the inversion is 175 m.

In this setup, we record the data using 324 hydrophones evenly spaced at 25 m along
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the streamer. For simplification purposes we ignore the variable depth of the Broadseis

survey system and approximate it by placing the streamer line at a depth of 50 m below

the free surface.

Contributions of loss terms

In MTL, we seek to optimize the distribution of weights in the layers of the network

which minimize several loss terms at the same time. To understand the contribution

of each loss term, we gradually add loss terms one after the other to training and plot

the predicted data Figure 4.6. There, we compare the synthetic data reference against

predicted LF data (top row) and its subset matching the UF range (bottom row) inferred

by several network configurations.

Experimental setups described here pivot on two network architectures as well as

the increasing complexity of the loss formulation. The baseline architecture is the UNet

[180] that is a common choice in numerous applications dedicated to image translation

and segmentation. To construct an inference reference, we set UNet to directly predict

LF data from input data HF (UNet L). All other configurations are based on a multi-

column network layout, which shares the prefix "MTL". The first setup, given by a

multi-column encoder, aims to directly reconstruct one target that is low-frequency data

(L). The dynamic loss weighting is implemented in the remaining configurations where

the objective function for training combines more than one term. The first objective is

to fit the data loss together with the correlation loss term (LC). The last experimental

setup involves adding the subsurface model loss term (LCM) thus using all terms from

the equation 4.1.

Analyzing the inference results for a single CSG (Figure 4.6), we observe that the

generic UNet manages to recover strong events in the data while it fails at weak events,

such as reflections. The multi-column architecture with a single data target (L) shows

promise in recovering weak events. Adding the trace-wise correlation term (LC) boosts

the amplitudes of predicted data at later times. An intuition behind using the Pearson

coefficient as a loss term is similar to the one for the cosine similarity, where the target

for optimization is the angle between two vectors rather than their amplitude match-

ing. Lastly, by adding the local subsurface as a target we guide the training toward a

unified solution that would accommodate a weak connection between waveforms and
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Figure 4.6: Low-frequency data (< 5 Hz, first row) predicted for a single synthetic shot
gather by UNet and multiscale network configurations. Same data after low-pass filtering
< 3 Hz (second row). Subscripts indicate the objectives of training: low-frequency
data (L); previous with correlation loss term (LC); previous with the local subsurface
model (LCM). The standard deviation of predictions by an ensemble of 10 network
initializations (third row)
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Obj Arch R2 SSIM Pearson
True - 1 1 1
L UNet 0.38± 0.25 0.79± 0.02 0.63± 0.25
L MTL 0.44± 0.24 0.81± 0.02 0.69± 0.23
LC MTL 0.44± 0.26 0.81± 0.02 0.68± 0.25
LM MTL −2.21± . . . 0.0± . . . 0.0± . . .
LCM MTL 0.44± 0.25 0.81± 0.02 0.69± 0.23

Table 4.1: Evaluation metrics for selected network configurations. Mean R2 score, Struc-
tural Similarity Index (SSIM) and Pearson coefficient measured for 80 extrapolated
shots (< 3 Hz) used for FWI in Marmousi II model. Abbreviations for experiments are
explained in Figure 4.6.

the subsurface (LCM). Fitting the multi-objective loss is a more challenging task with

more variables involved. However, the LF data predicted in this way appears to be more

accurate than the one predicted without model and correlation loss terms (Table 4.1).

For each configuration we also plot the trace-wise Pearson correlation coefficient

(Figure 4.7). The intention is to understand how the proposed architecture and loss

terms affect the linear correlation between predicted and true data when compared to

the baseline configuration. Specifically, we compute the mean and standard deviation

from the low-pass inference results, filtered below 3 Hz, on 80 shot gathers used later

for the inversion in the Marmousi II model, and compare these quantities with the mean

trace-wise Pearson coefficient computed for predictions by UNet (dashed line). There is

a minimum value in the near-offset range shared among all experiments which increases

again when moving away from the source location. The proposed approach (LCM) shows

a higher linear correlation with the target data at all offsets as compared to UNet.

Figure 4.7: Pearson correlation coefficient for the set of 80 shots used for FWI on syn-
thetic data. A horizontal dashed line indicates the perfect correlation score. The dashed
line in correlation plots indicates the performance of UNet. Abbreviations for experi-
ments are explained in Figure 4.6.
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Table 4.1 shows the mean metric scores of inference on the same shots of synthetic

data mentioned earlier. Due to the mild overlap between target and input data, the

data < 5 Hz predicted by all network setups shows a nearly perfect correlation with the

true data, not shown in the table. Lower frequencies, in turn, have a higher value for

early iterations of FWI so we focus attention on the subset below 3 Hz. Aside from the

Pearson coefficient, we use a set of common metrics to compare the performance of the

algorithms. The R2 metric [181] measures how much more variance the model describes

compared to the mean of the dataset. The structural similarity index measure (SSIM)

quantifies the perceptual similarity between two images [182]. Unlike other metrics

reported here, it depends on the window size where evaluation happens. We set it to be

0.1 from the minimum dimension of the data or 35 pixels along each side.

All experiments with multi-column architecture show improved fit in the ultra-low

frequency range compared to the UNet application. Otherwise, reported metrics indicate

similar performance among all formulations of multi-task objectives. A direct recovery

of the data and model (LM) was not successful without using the correlation loss term.

In such cases, the training fell into the local minimum equivalent to recovering of the

subsurface model only, giving up the data fitting turn. Despite marginal differences

in performance of data only (L) and data with trace-wise correlation (LC) objectives,

the correlation term appears to be crucial for simultaneously fitting data and model

objectives (LCM). Together with the recovered subsurface model, the predicted low-

frequency data seems sufficient to guide FWI to a better minimum.

Inference on synthetic data

The trained MTL neural network accepts a band-limited shot gather, HF, >4 Hz, as

input and produces two outputs - low-frequency data, LFp, < 5 Hz and the sparse

representation of the local subsurface model Mp. Numerically, this is equivalent to

translating the input volume dimension of [1, 324, 376] into [1, 324, 376] and [1, 81, 94].

The first output of the model is low-frequency data. Weak amplitudes of the predicted

signals at later times make it difficult to evaluate the presence of signals there. We

apply an automatic gain control (AGC) to several low-pass subsets of predicted synthetic

data to visualize how the complexity of extrapolation increases at lower frequencies

(Figure 4.8). As can be seen, the reconstruction is more accurate at higher frequencies
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since we intentionally introduce the overlap window between 4 and 5 Hz to recover the

amplitudes of the predicted data. The predicted data below 3 Hz matches the target in

shallow parts while the signal gets scattered at later times.

Figure 4.8: Example interval comparison of true and predicted low-frequency data after
low-pass filtering and automatic gain control.

The second output is the local subsurface model. The network learns a direct map-

ping between input data and the geological structure underlying the shot location. To

understand the data-to-model translation, we upscale the predicted velocity model by a

factor of 4 (the ratio is built into the network design) and overlap it with the input data

Figure 4.9. Given that the synthetic dataset used for training was generated assuming

a flat water bottom at variable depth, this approximation of variable-depth marine sub-

surface geometry appears to be sufficient for the network to match strong water bottom

reflections in the data with the depth of the underlying seafloor. Also, predicted velocity

anomalies seem to be spatially limited by the offset reached by the propagating signals.

To improve the spatial coverage in the predicted model we accommodate this observa-
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tion by introducing offset-flip data augmentation at the training stage. This effectively

doubles the size of training datasets and motivates the weight optimization to search for

flip-invariant encoder embeddings of the data.

Figure 4.9: Local subsurface velocity models predicted by the same trained network
and overlapped with respective input synthetic (top) and field data (bottom). The net-
work pivots on water bottom reflections to recover the depth of the seafloor as well as
translates deeper reflections into velocity anomalies.

A single CSG is not sufficient to recover the complete 2D subsurface model. However,

it contains enough information about the background velocity trend, water depth, and

near-offset geological structures.

Full-waveform inversion

The complete workflow for elastic FWI initiated from predicted data is shown in Fig-

ure 4.1. First, we build an initial velocity model for inversion by taking the weighted av-

erage of predicted local velocities for each shot. The part of the initial model not covered

by the survey (before the first source location) is a mirrored version of the reconstructed

model. Before running FWI, we populate the missing frequency content below 4 Hz in

the field data with the one of the predicted data. True amplitudes of low-frequencies

were lost at the pre-processing stage and we approximately reconstruct those from the

overlapping range from 4 to 5 Hz between predicted and available high-frequency data.

Specifically, we apply a band-pass filter with the before-mentioned corner frequencies to
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both predicted and observed data and find the maximum amplitude in the filtered data.

Then, we normalize the predicted data to fit the range from -1 to 1 and multiply it by

the amplitude extracted from field data. The remaining step is to merge the predicted

data with the field data, done in the frequency domain.

The inversion strategy uses an L2 norm minimization of the difference between

observed and simulated data. We successively invert the low-pass filtered data with

corner frequencies from 3 to 7 Hz, making 1 Hz steps. We further regularize the inversion

of the extrapolated 3 and 4 Hz data by applying a 2D spatial variable Gaussian filter

to the gradients [183]. This causes smooth velocity updates for the most uncertain

data. We disable this regularization for frequencies starting from 5 Hz, which inserts

high-resolution details into the inverted models.

Figure 4.10: Full-waveform inversion of band-limited data 4-7 Hz (b) started from
linear initial model (a). Extrapolated FWI initiated from predicted initial model and
low-frequency data below 3, 4, and 5 Hz (c-e).

As seen in Figure 4.10, conventional FWI initiated from a linear initial model fails

when data below 4 Hz is unavailable even when velocities in shallow sediments are

assumed to be known from well-logs. The resulting subsurface model is corrupted by

severe cycle-skipping artifacts indicating that the mismatch between target and initial

subsurface models can not be inverted by FWI. In the following, we initiate the inversion

from a predicted smooth initial velocity model and use predicted data as the target.

The predicted initial model appears to be locally linear (Figure 4.10) as expected

due to the limited amount of information encoded in a single CSG. In other words,

the predicted model explains the water bottom reflection and background trend at the

reference log location, rather than reflects the detailed structure of the subsurface. When

followed by the inversion of predicted data below 3 Hz, the shallow part of the subsurface

becomes more pronounced. The next iteration of inverting for data filtered below 4 Hz

details the complex fault structures in the central part as well as corrects the high-
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velocity layers around the reference well-log. The inversion of subsequent frequency

bands above 5 Hz is dominated by high-frequency field data and thus inserts fine details

into the inverted subsurface. Turning off Gaussian smoothing of gradients above 5 Hz is

another reason for the higher resolution at later stages.

Figure 4.11: Elastic full-waveform inversion of Marmousi II benchmark model. The true
distribution of elastic parameters Vp , Vs and ρ are compared with their counterparts
inverted by extrapolated FWI.

The isotropic elastic Marmousi II model is parameterized by velocities of compres-

sional waves, Vp , shear waves, Vs , and density, ρ (Figure 4.11). We construct Vs and

ρ using the same empirical relations as were used for the generation of random subsur-

face models for training. The reason is to deliver a homogeneous framework between

synthetic and field experiments where these elastic parameters are unknown.

The Vp component reconstructed by the extrapolated FWI closely follows the well-log

down to a depth of 3 km and then undershoots the deep high-velocity structure. The

potential reservoir hidden in the folds of sedimentary layers in the shallow part is clearly

resolved. Reconstructed shear-wave velocity Vs , and density ρ , also exhibit common

features with the target model but show worse results. The reason for that is in the

nature of the scattering phenomena. In an ideal illumination scenario (infinite offsets

and unlimited frequency content) all three isotropic elastic parameters could be resolved

from the recorded P-waves [54, 119, 118]. P-waves recorded by hydrophones are most

sensitive to Vp so this parameter is resolved most accurately. The range of illumination

angles decreases with depth, as well as high frequencies decay faster with distance.

Decoupling of perturbations from different parameters becomes more challenging for
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deeper targets. For these reasons, Vs and ρ are mostly resolved in the shallow parts of

the model.

4.4.3 Marine field data

The same trained neural network as in synthetic experiments is applied for inference on

marine field data. We band-pass each of the 80 shots used in FWI between 4 and 15 Hz

to produce inputs to the network.

Inference

The network reconstructs low-frequency data below 5 Hz and a set of localized subsur-

face models (by shot) such as those shown in Figure 4.9. The Broadseis acquisition

system used during the survey records frequency components of the wavefield down to

2.5 Hz. Thus, there is a shared band of frequencies below 4 Hz where we can compare

predictions and observed waveforms Figure 4.12. We see a match of first arrivals since

these are the strongest events. However, since synthetic data does not experience at-

tenuation we observe boosted amplitudes in later arrivals. The network also serves as

a denoising operator, and the noise present in the filtered data is due to leakage from

higher frequencies. Seismic noise is almost absent in the data at the lowest frequency

range for the same reason.

Contributions of the components of the multi-task objective are visualized in Fig-

ure 4.13. The correlation term promotes reflections arriving at later times to become

more prominent. Adding local subsurface as a target further improves the consistency of

predictions within the ensemble of network initializations.

Full-waveform inversion

Full-waveform inversion of the field dataset follows a similar strategy as the inversion

of synthetic data. Specifically, we use the L2 objective function between simulated and

observed data and guide the optimization by an L-BFGS algorithm [99]. The target for

inversion is a blend of extrapolated low-frequency data and available high-frequency

data. We change the corner frequency of low-pass filters to invert for sub-bands of the

data in a stage-like fashion [150]. In particular, we partition the full band by filtering
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Figure 4.12: Comparison of observed and extrapolated data in frequency ranges of a
CSG from marine field data. The synthetic input data for training was set to zero below
4 Hz.

Figure 4.13: Same as Figure 4.6 but for a CSG from marine field data.
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it with corner frequencies of 3, 4, 5, 6, and 7 Hz. We account for inaccuracies in the

extrapolated data below 4 Hz by Gaussian gradient smoothing at the first two stages. We

disable smoothing at later stages. The shape of seafloor found from the earliest reflection

arrivals defines a taper mask, disabling model updates in the water column.

Figure 4.14: Same as Figure 4.10 for real-world marine streamer data.

We examine the capability of FWI without low frequencies by starting it from a 1D

velocity model with known water bottom (Figure 4.14, left). Moreover, we assume a

known transient layer between water and sediments by using the shallow part of the

well-log extracted at an offset of 10.5 km. However, these assumptions appear to be

insufficient for the inversion to converge when the low-frequency content in the data is

limited by 4 Hz. The resulting model indicates the presence of a high-velocity layer at

2 km depth, unable to build a consistent distribution of elastic parameters.

The predicted background model (Figure 4.14) indicates the presence of a high-

velocity anomaly in the left part of the model. Meanwhile, the velocity profile increases

gradually with depth in the right part. A notable feature of the predicted model is that

the sea floor depth was accurately reconstructed (Figure 4.15). Further FWI iterations of

the predicted data at 3 and 4 Hz refine the layered structure of the subsurface. However,

the predicted high-velocity layer on the left seems to be overestimated which causes

artifacts when inverting higher frequencies.

Figure 4.15 compares an observed well-log recorded at 10.5 km with predicted initial

model and final FWI result of 7 Hz data. We find that the peaks of high-velocity layers

are shifted in this field data example. A similar shift of the first layer with respect to

the well-log was observed in [184]. A reason for that might be the fact that we ignored

anisotropy in our simulation. Vertical transverse anisotropy would take into account

different velocities of wave propagation along horizontal and vertical directions in such

a layered model. Another reason for overestimating velocities deeper than 2 km is that
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Figure 4.15: Well-logs of Vp velocities compared to predicted initial model and the
extrapolated FWI result. Synthetic experiment on Marmousi II model (left) indicated a
reasonable fit down to 3 km depth. In the field data experiment (right), the mismatch
is partially caused by the isotropic approximation of the medium as well as ignoring the
attenuation of the wavefield.

we ignored 3D effects of the field data as well as attenuation in the formulation of the

numerical wave propagation. All together, higher amplitudes of the synthetic signal

arriving at later times translate into higher velocities of deep reflectors. Still, there is

a fair match with the field well-log considering that no well-log information was used

when building the initial velocity model and during the inversion itself.

Figure 4.16: Example interval comparison of marine streamer data and synthetic data
generated in the final velocity model inverted by FWI, initiated from predicted initial
model and low-frequency data.

In our full-waveform inversions, the data match is the only objective. The optimiza-

tion thus seeks for a distribution of elastic parameters in the subsurface such that the

generated synthetic waveforms match every wiggle in the observed seismic data. Fig-

ure 4.16 compares the field record from 4 km with its synthetic counterpart from the

initial and final model inverted by elastic FWI. We see that phases of the reconstructed

events overall improve and are in fair agreement with field recordings, while some ampli-
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tudes remain overestimated. Further advances are still possible regarding both modeling

and parameterization possibilities as well as FWI strategies, however, this would extend

the focus of this study and must be addressed in future research.

4.5 Discussion

In this study, we explore the extension of a data-driven FWI framework to include a

multi-task learning approach, combining bandwidth extrapolation and initial subsurface

model estimation. Deep learning based on convolutional neural networks is dictated,

among others, by the number of trainable parameters and the associated search space.

As compared to single-frequency formulations, time-domain signals might be considered

as superpositions of multiple monochromatic signals, each featuring its own wavelength

and amplitude. A 1D configuration of seismic data thus would be a single seismic trace

in the time domain and mono-frequency data in the frequency domain. The dimension

of a time-domain trace would be equal to the number of temporal samples while the

dimension of a single frequency slice is proportional to the number of receivers. Adding

an extra dimension to any of those simplest data types increases the complexity of

training since optimization should search for the network weight distribution describing

a search space with an extra dimension.

Bandwidth extrapolation becomes more challenging when moving from a trace-to-

trace to a shot-to-shot and finally to a survey-to-survey formulation due to the growth

of the dimensionality of the outputs. On the other hand, the fidelity of predictable wave

phenomena increases thanks to the growth of the input data features. Ultimately, the

accuracy of bandwidth extrapolation should improve when adding more data, provided

that the training data set is rich and the prediction model has sufficient learning capacity.

Full-waveform inversions within the framework of our study depend on the high-

fidelity estimations of either low-frequency data or the initial velocity model. Reaching

a required accuracy for each of these estimations independently might be an ambitious

task. However, due the inherent trade-off between these tasks, inversions tend to tolerate

inaccuracies when fair rather than perfect estimates of both velocity model and low-

frequency data are available.

In this work, we extrapolated full shot gathers recorded in a real marine survey. We
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observe, that none of the predicted low-frequency elastic data are sufficiently accurate

to run an elastic FWI starting from a simple, linearly increasing with depth, velocity

model. However, when we jointly predict both low-frequency data and the initial model

for inversions, the predicted initial model compensates for data inaccuracies, increasing

the robustness and fit for a FWI application. Additionally, our test applications further

confirm the importance of self-weighing of loss-terms in a multi-task learning formula-

tion. In particular, the auxiliary correlation loss term based on the Pearson coefficient

further helps the recovery of reflections in predicted data.

4.6 Conclusions

We developed a data-driven deep learning approach to jointly reconstruct the low-

frequency content of an entire common-shot gather together with the respective local

subsurface model. The proposed multi-task learning objective with automatic weight bal-

ancing aims to simultaneously fit data, initial model estimate, and trace-wise correlation

terms. The predicted smooth background model effectively compensates for inaccuracies

in recovered ultra-low frequencies by uplifting the lowest frequency required to initiate

the inversion. Adding noise from real data to the training dataset and replicating real

acquisition parameters (source sweep and source-receiver spacing) allowed us to use the

same trained neural network for real and synthetic data, without any transfer learning

or retraining. New data acquired by the same streamer and airgun setup in a similar

deepwater environment can potentially be processed in seconds now with this trained

network.
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Chapter 5

Discussion and conclusions

This chapter concludes my dissertation. Here I will summarize the key findings, discuss

the limitations of the proposed methods as well as share my outlook on future research.

5.1 Key findings and limitations

Full-waveform inversion is a rather fragile non-linear optimization process that is sensi-

tive to the available bandwidth in the data as well as a starting point. I dedicated these

few years to a search for a data-driven way of how to facilitate the convergence of FWI

by starting it from a better state. In a nutshell, I showed that model-domain projections

of errors that FWI makes can guide to a better model of the subsurface. Lower frequen-

cies are easier to recover when approaching the task in the frequency domain. On the

contrary, very low frequencies are more difficult to reconstruct in the time domain since

amplitudes there are dominated by higher frequencies within the same target range.

Finally, I proposed to loose the requirements for accuracy of extrapolated low-frequency

data and smooth background model for time-domain elastic FWI by jointly predicting

the missing data and initial model in the multi-task deep learning setup. Below I extend

this short summary for each chapter of the work.

5.1.1 Initial model building by the variance-based method

Chapter 2 proposed a way to learn from errors that frequency-domain FWI makes when

initiated from a poor initial model. Specifically, I formulate the variance-based method

for the initial velocity model building in the presence of salt bodies. High contrasts

cause poor illumination of sub-salt and cycle-skipping occurs when velocities inside the

salt body are severely underestimated. I showed that these cycle-skipping artifacts in
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the model domain correspond to the local minima of the objective function for specific

mono-frequencies. The model-domain difference between such corrupted inversion re-

sults might then be used to locate and correct the unresolved areas of the subsurface.

By iteratively interpolating these unresolved areas from the robustly inverted neighbor-

hoods we guide inversion to a better minimum of the objective function.

Discussion. The method is tailored for frequency-domain solvers and I assume that the

shape of the artifacts might change depending on the formulation of forward modeling

in the frequency domain. The concept should remain valid regardless of the solver

but other scenarios should be explored deeper. The beneficial feature of frequency-

domain modeling is its computational costs at low frequencies. Long-wavelength data

allows sparse sampling of the modeling domain that facilitates running inversions at

several mono-frequencies at the same time. Successful termination of the proposed

iterative salt-flooding indicates the algorithm constructed a low-wavenumber model of

the subsurface suitable for further inversion. Time-domain FWI is the industry standard

for 3D problems as solving wave equation in time domain offers scalable and flexible

framework. The usage of frequency-domain FWI is typically limited to 2D problems due

to high memory requirements associated with solving Helmholtz equation for 3D setups.

Thus, for practical applications on field data the proposed variance-based method should

be used only for building the initial velocity model followed by time-domain FWI.

5.1.2 Low-frequency extrapolation by deep learning

Chapter 3 explains frequency-domain method for low-frequency data extrapolation by

deep learning. I show that the frequency-domain approach is suitable for multi-offset

data extrapolation since each mono-frequency data is encoded by a single complex

value at each offset, so the entire common-shot-gather in 2D survey setup might be

explained by a 1D vector for each frequency. The accuracy of bandwidth extrapolation

in such a formulation increases for lower frequencies due to larger wavelengths in re-

spective waveforms. Another benefit of the frequency-domain formulation is that data

for each frequency might be scaled independently, mitigating the problem of negligible

amplitudes of low frequencies in the time domain. Specifically, the method is based on
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mapping by a deep neural network from multiple regularly sampled known frequencies

to a single target low frequency. This way, a deep learning model becomes specialized in

recovering a single frequency by extrapolating patterns in the stack of higher frequencies.

Discussion. The conventional supervised training of the deep learning model is limited

by the diversity of the training dataset and the realism of physics of wave phenomena

during modeling of seismic wave propagation. Only the acoustic approximation was

considered in this work. While sufficient for experiments on synthetic data, it might

not be accurate enough to describe complex wave phenomena in field data. Since the

approach assumes training a separate convolutional network for each frequency, the

practical application of the proposed method is limited by frequency-domain FWI which

requires a sparse set of frequencies. The natural representation of a seismic signal is

in the time domain so the next method addresses issues outlined in the previous two

methods.

5.1.3 Multi-task learning for joint data and model extrapola-

tion

Chapter 3 proposes a deep learning method for joint recovery of low-frequency data and

a smooth background model for FWI. I implement the automatic contribution balancing

of data, model, and trace-wise correlation loss terms in the objective function and show

that training fails when the correlation is not taken into account. Moreover, this study

shows that large perceptive fields of convolutional kernels are crucial to capture the

long-wavelength imprint of low-frequency data. The key finding of this work is that pre-

dicted low-frequency data and the initial background model compensate for inaccuracies

of each other by increasing the minimum frequency required for inversion to converge

when started from the predicted initial model. This way, the same deep neural network

trained on synthetic data produces suitable data/model pairs for elastic FWI applied to

synthetic and field data.
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Discussion. An interesting observation is that the proposed deep learning application

does not break physics. Meaning that the predicted velocity model from a single shot

gather, as expected, is missing fine details and is not accurate when considered without

the surrounding context of other shot gathers. In particular, near-offset sections of the

subsurface are reconstructed in more detail than farther offsets where illumination is

far from zero-offset approximation. This supports the assumption that the non-linear

function derived in the layers of the network is a reasonable estimator of the interaction

of the wave field and the elastic medium. A more physics-backed formulation of the

input data for training would be common-midpoint-data arrangement that is natural for

velocity analysis. Another note is about the quality of recovered low-frequency data. The

FWI is sensitive to the accuracy of extrapolated data at low frequencies. Meaning that

mistakes at lower frequencies will strongly affect inversion at higher frequencies. This

poses high expectations on extrapolated data at tomographic frequencies. However, joint

extrapolation of low-wavenumber partially compensates for inaccuracies in predicted

low-frequency data and allows to lift the minimum frequency needed to proceed with

elastic FWI.

5.2 Discussion

For deep learning applications of bandwidth extrapolation, there is a trade-off between

computational complexity and fidelity of description of wave phenomena. Intuitively,

the fidelity of description of wave phenomena also increases when advancing from

single trace/frequency formulation toward shot gather and finally reaching the scale

of the entire survey where all wave phenomena are realistically captured. However,

the complexity of training the deep neural network also increases for the input data of

large dimensions. Meaning that single-trace data requires an order of magnitude fewer

basis functions to be accurately explained. A shot gather, thus, should be described

as a combination of 2D kernels rather than 1D kernels sufficient for trace explanation.

The survey-scale setup operating on full-scale spatio-temporal 3D seismic data would

then require even more basis functions of higher dimensionality to completely describe

common patterns in the data.

The generalization capability of the listed data layouts increases as the fidelity of de-
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scribed physics decreases. Trace-to-trace approaches then might be easily applied to any

domain as long as temporal sampling in the data is matched. However, these assume the

lowest fidelity limited by information encoded into a single trace. The shot-to-shot for-

mulation requires temporal and spatial sampling to match between shots from different

datasets. This formulation already accounts for 2D effects. The generalization of applica-

tions operating on entire surveys seems challenging since the knowledge transfer should

be possible if an identical acquisition takes place in different geological environments.

Such a setup might be viable in marine streamer setups. An alternative solution would

be to re-formulate training from physical to reference domain and assume variability

in survey parameters (e.g. random shot/receiver locations and delta function as source

wavelet).

Both time and frequency domains are each mostly suitable for specific applications

of bandwidth extrapolation. Seismic data might be formulated as a 1D vector for single

offset (seismogram) in the time domain and as a mono-frequency shot gather in the

frequency domain. The single-trace time domain data is equivalent to a composition of

multiple independent frequencies each featuring its own amplitude at a particular offset.

Generally, lower frequencies have weaker amplitudes and thus the major challenge of

time-domain low-frequency extrapolation is balancing the amplitudes within the band of

target low-frequency data. On the contrary, the single-frequency data spans over multiple

offsets and does not suffer from negligible amplitudes of events at farther offsets since

this might be compensated by geometrical spreading correction. The challenge, however,

is to ensure consistency between neighboring frequencies. To sum up, the single-trace

time domain data is missing spatial connectivity with the data from nearest offsets while

single-frequency data is missing temporal connectivity with the data at the next and

previous discrete frequencies.

5.3 Future work

Synthetic data is often the only source of data pairs for supervised training of deep

learning models when real-world references are not available. However, synthetic data

on seismic waveforms is limited by the physics of numerical approximation of wave

propagation as well as the geological realism of sample subsurface initializations. The
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concept of domain adaptation [185] offers a feasible way to facilitate the transition

between training on synthetic data and application to field data. Our early experiments

[186, 187, 188], have already shown a promise in application to near-surface land,

marine and microseismic data.

Single common-shot-gather assumes independence of seismic data produced by

neighboring shots. This is not true in reality. A more descriptive composition of in-

put data should include a set of shot-gathers within the selected limited aperture. This

would cover the pitfalls of time and frequency domains mentioned earlier. Specifically,

set multiple shot-gather data in the input would ensure connectivity along the offset axis

(time-domain data pitfall) while the natural composition of time-domain data as a set

of multiple frequencies implicitly makes relations between neighboring frequencies un-

avoidable (frequency-domain data pitfall). Since deep learning builds the target data as

a non-linear combination of basis functions (convolutional kernels) stored in its weights,

the connectivity between frequencies (that are independent of each other from the wave-

propagation point of view) should be considered as a pattern in the frequency-offset

domain.

Deep learning approaches typically treat elements of input data as a collection of

independent pixels. This is a valid assumption for processing real-world images while

it is not accurate for seismic data that is usually ordered along with offset and time

axis. By incorporating knowledge about data structure into the training would constraint

optimization on the way to the global minimum of the objective function. The constraints

might be directly added into the formulation of misfit functional (e.g. adding trace-wise

correlation term) as well as embedded into the design of network architecture (e.g.

using dilated convolutions to capture long-wavelength trends). However, an appealing

option is to derive a common knowledge about seismic data by using the concept of

self-supervised learning [189]. This way, the model learns in an unsupervised way to

address the so-called pre-text tasks such as classification of rotation applied to the data

or inpainting of missing areas. When succeeded in solving these pre-text tasks, the model

might be trained to tackle the principal task. Alternatively, physics-informed neural

networks [190] directly applied to geophysical problems of being used as a constraint

might greatly improve the fidelity of constructed solutions.
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5.4 Concluding remarks

Everything is information and diverse topics covered in this work support that. I showed

that even mistakes that inversion makes during local optimization can shed the light

on how to better initialize it. Another insight is that approximately solving two tasks

might deliver better outcomes than trying to reach superior accuracy for only one from

these tasks. The entire domain of artificial intelligence evolved around the concept of

extracting useful knowledge from vast amounts of data. This is relevant to geophysics in

particular since there are large seismic legacy datasets that are still waiting to reveal new

insights after being re-processed by modern methods. The future of geophysical research,

in my opinion, will focus on unsupervised methods that impose fewer assumptions on the

complexity of wave phenomena, unveiling the secrets of the Earth in a truly data-driven

way.
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