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1. ABSTRACT

Full-waveform inversion (FWI) benefits in many ways from having low-
frequency data. However, those are rarely available due to acquisition
limitations. Here, we explore the feasibility of frequency band-width
extrapolation using an Artificial Neural Network (ANN). The ANN is trained
to be a non-linear operator that maps high-frequency data for a single
source and multiple receivers to low-frequency data. Assuming that the
source is a delta function both in space and time, we train the network on
synthetic data generated from random velocity models. We apply the ANN to
multiple collocated sources-receivers acquisitions to predict 0.5 Hz data for
a crop from the BP 2004 benchmark model. Prediction results follow in
general the reference data but the prediction accuracy is not sufficient yet for
usage in FWI as demonstrated by a regularized mono-frequency FWI on
extrapolated data.

2. LOW-FREQUENCY DATA
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(Kazei et al., 2016)

Inversion of low-frequency data delivers low-wavenumber initial models for FWI
(Kazei et al., 2013) but due to instrumental limitations lowest and highest temporal
frequencies in observed data are often inaccessible (Maxwell and Lansley, 2011).

Multiple approaches have been proposed to tackle the problem of inversions
when low-frequency data is not available:

Modifications of misfit/gradient
Attempts to reduce number of local minima in
the misfit function by changing its definition
(Chen et al., 2018) or to introduce
modifications in the gradients, e.g. scattering-
angle based filters (Alkhalifah, 2015; Kazei et
al., 2016) to stabilize the inversion at early

N iterations.

Extrapolation of frequency bandwidth
Attempts to extend frequency bandwidth so

?. M the low-frequency content is used to build
A initial model for FWI (Li and Demanet, 2016;
Hu, 2014).

Relevant studies:

Beat tone inversion  Bandwidth extension for Low frequency extrapolation
(Hu, 2014) atomic events with deep learning
(Li & Demanet, 2015, 2016) (Sun and Demanet, 2018)
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3. MULTILAYER PERCEPTRON 6. RESULTS
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An ANN, in particular Multilayer Perceptron, is a powerful tool coming from early days of Machine We perform a synthetic study for 2D acoustic isotropic media. Velocity Re 1oo\
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The ANN serves as a non-linear operator mapping high-frequency data to low-frequency data, assuming 7. CONCLUS'ONS

that the source is a delta function in space and time. We train the network with synthetic data generated
from random velocity models to predict a single complex amplitude at each receiver for a specific low
frequency given several high frequency values.

We explored the feasibility of reconstructing low-frequency data using an Artificial Neural
Network given high-frequency spectra. Here, we assume the low-frequency wavefield
content to be related with the one at higher frequencies through a non-linear operator
encoded by the physics of wave propagation in the subsurface. We trained an ANN on data

4. INPUTS AND OUTPUTS generated from random velocity models and then tested it on reference data.
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o Prediction results in general follow the reference data but the prediction accuracy is barely
& sufficient yet to make the reconstructed data directly usable in FWI. However, results are

encouraging and in future work we will further investigate the dependency of the network
training on model diversity and network topology.

1 u Network topology
; - 1 B N =960 M =240 15t Hidden layer: 2 * N, nodes
. N - 2"d Hidden layer: 2 * M, nodes
50 100 150 200
NREC NREC 48000
total

34 Hidden layer: 1 * M, nodes

H D D Batch size: 1024

Learning rate: 0.005
Optimizer: Adam
Weight regularization: 0.005

Source Receivers

The input data for the network are the frequency spectra recorded at each receiver and discretized by a
few values. The frequency values are separated by a multiplicative increment as such selection is common
for frequency domain inversions (Sirgue and Pratt, 2004). The output data is a vector containing single
complex amplitude for a selected low frequency at each receiver.
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5. GENERATION OF TRAINING DATA

Random velocity model

We use random Gaussian fields to build a set
of random velocity models obeying a o
minimum threshold in terms of Frobenius - —
distance. A wider diversity in features of 4] -

random models enhances resulting prediction
accuracy.

LUV | S\ R — @ ‘ . .. Li, Y.E. and Demanet, L. [2016] Full-waveform inversion with extrapolated low-frequency data. Geo- physics, 81(6), R339—-R348.
T _ h‘ " P Q@9 ~ .. ..~ Maxwell, P. and Lansley, M. [2011] What receivers will we use for low frequencies? In: SEG Technical Program Expanded Abstracts
RN Aol fifones @ & ....‘ ® .’ 2011, Society of Exploration Geophysicists, 72-76.
ij 411 Q@ @ .. @ Ovcharenko, O., Kazei, V., Peter, D. and Alkhalifah, T. [2017] Neural network based low-frequency data extrapolation. In: 3rd SEG
¥ yo ‘. ® @ FWI workshop: What are we getting?
IR AR EE R il .’ Sirgue, L. and Pratt, R. [2004] Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies. Geophysics,

..............
HEH T 3 HIHITE U . “ Y HHH T

Source Receivers

69(1), 231-248.
Sun, H. and Demanet, L. [2018] Low frequency extrapolation with deep learning. http://math.mit.edu/

High-frequency data Low frequency data ® Model space

ACKNOWLEDGEMENTS

We are grateful to Professor Gerhart Pratt,
Basmah Altaf, Jubran Akram, SMI and SWAG
groups at KAUST for fruitful discussions.

CONTACT INFORMATION

oleg.ovcharenko@kaust.edu.sa
ovcharenkoo.com



